Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):477–483. doi: 10.1016/S0006-3495(98)77536-8

Differential halothane binding and effects on serum albumin and myoglobin.

R G Eckenhoff 1, J W Tanner 1
PMCID: PMC1299721  PMID: 9649409

Abstract

To understand further the weak molecular interactions between inhaled anesthetics and proteins, we studied the character and dynamic consequences of halothane binding to bovine serum albumin (BSA) and myoglobin using photoaffinity labeling and hydrogen-tritium exchange (HX). We find that halothane binds saturably and with submillimolar affinity to BSA, but either nonspecifically or with considerably lower affinity to myoglobin. Titration of halothane binding with guanidine hydrochloride suggested more protection of binding sites from solvent in BSA as compared with myoglobin. Protection factors for slowly exchanging albumin hydrogens are increased in a concentration-dependent manner by up to 27-fold with 10 mM halothane, whereas more rapidly exchanging groups of albumin hydrogens have either unaltered or decreased protection factors. Protection factors for slowly exchanging hydrogens in myoglobin are decreased by halothane, suggesting destabilization through binding to an intermediate or completely unfolded conformer. These results demonstrate the conformation dependence of halothane binding and clear dynamic consequences that correlate with the character of binding in these model proteins. Preferential binding and stabilization of different conformational states may underlie anesthetic-induced protein dysfunction, as well as provide an explanation for heterogeneity of action.

Full Text

The Full Text of this article is available as a PDF (70.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abadji V., Raines D. E., Dalton L. A., Miller K. W. Lipid-protein interactions and protein dynamics in vesicles containing the nicotinic acetylcholine receptor: a study with ethanol. Biochim Biophys Acta. 1994 Aug 24;1194(1):25–34. doi: 10.1016/0005-2736(94)90199-6. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Protein stability parameters measured by hydrogen exchange. Proteins. 1994 Sep;20(1):4–14. doi: 10.1002/prot.340200103. [DOI] [PubMed] [Google Scholar]
  3. Bigelow D. J., Thomas D. D. Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. J Biol Chem. 1987 Oct 5;262(28):13449–13456. [PubMed] [Google Scholar]
  4. Chiou J. S., Ueda I. Ethanol unfolds firefly luciferase while competitive inhibitors antagonize unfolding: DSC and FTIR analyses. J Pharm Biomed Anal. 1994 Aug;12(8):969–975. doi: 10.1016/0731-7085(94)00045-x. [DOI] [PubMed] [Google Scholar]
  5. Cobb C. E., Juliao S., Balasubramanian K., Staros J. V., Beth A. H. Effects of diethyl ether on membrane lipid ordering and on rotational dynamics of the anion exchange protein in intact human erythrocytes: correlations with anion exchange function. Biochemistry. 1990 Dec 4;29(48):10799–10806. doi: 10.1021/bi00500a012. [DOI] [PubMed] [Google Scholar]
  6. Dubois B. W., Cherian S. F., Evers A. S. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6478–6482. doi: 10.1073/pnas.90.14.6478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubois B. W., Evers A. S. 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin. Biochemistry. 1992 Aug 11;31(31):7069–7076. doi: 10.1021/bi00146a007. [DOI] [PubMed] [Google Scholar]
  8. Eckenhoff R. G. Amino acid resolution of halothane binding sites in serum albumin. J Biol Chem. 1996 Jun 28;271(26):15521–15526. doi: 10.1074/jbc.271.26.15521. [DOI] [PubMed] [Google Scholar]
  9. Eckenhoff R. G., Johansson J. S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997 Dec;49(4):343–367. [PubMed] [Google Scholar]
  10. Eckenhoff R. G., Shuman H. Halothane binding to soluble proteins determined by photoaffinity labeling. Anesthesiology. 1993 Jul;79(1):96–106. doi: 10.1097/00000542-199307000-00015. [DOI] [PubMed] [Google Scholar]
  11. Englander S. W., Englander J. J. Structure and energy change in hemoglobin by hydrogen exchange labeling. Methods Enzymol. 1994;232:26–42. doi: 10.1016/0076-6879(94)32041-1. [DOI] [PubMed] [Google Scholar]
  12. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  13. Franks N. P., Lieb W. R. Temperature dependence of the potency of volatile general anesthetics: implications for in vitro experiments. Anesthesiology. 1996 Mar;84(3):716–720. doi: 10.1097/00000542-199603000-00027. [DOI] [PubMed] [Google Scholar]
  14. Johansson J. S., Eckenhoff R. G., Dutton P. L. Binding of halothane to serum albumin demonstrated using tryptophan fluorescence. Anesthesiology. 1995 Aug;83(2):316–324. doi: 10.1097/00000542-199508000-00012. [DOI] [PubMed] [Google Scholar]
  15. Johansson J. S., Eckenhoff R. G. Minimum structural requirement for an inhalational anesthetic binding site on a protein target. Biochim Biophys Acta. 1996 May 21;1290(1):63–68. doi: 10.1016/0304-4165(95)00187-5. [DOI] [PubMed] [Google Scholar]
  16. Nozaki Y., Tanford C. The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. J Biol Chem. 1970 Apr 10;245(7):1648–1652. [PubMed] [Google Scholar]
  17. Pace C. N., Vanderburg K. E. Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin. Biochemistry. 1979 Jan 23;18(2):288–292. doi: 10.1021/bi00569a008. [DOI] [PubMed] [Google Scholar]
  18. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  19. Schoenborn B. P. Binding of cyclopropane to sperm whale myoglobin. Nature. 1967 Jun 10;214(5093):1120–1122. doi: 10.1038/2141120a0. [DOI] [PubMed] [Google Scholar]
  20. Schoenborn B. P. Dichloromethane as an antisickling agent in sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4195–4199. doi: 10.1073/pnas.73.11.4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilton R. F., Jr, Kuntz I. D., Jr, Petsko G. A. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A. Biochemistry. 1984 Jun 19;23(13):2849–2857. doi: 10.1021/bi00308a002. [DOI] [PubMed] [Google Scholar]
  22. Ueda I., Yamanaka M. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency. Biophys J. 1997 Apr;72(4):1812–1817. doi: 10.1016/S0006-3495(97)78827-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wann K. T., Macdonald A. G. Actions and interactions of high pressure and general anaesthetics. Prog Neurobiol. 1988;30(4):271–307. doi: 10.1016/0301-0082(88)90025-1. [DOI] [PubMed] [Google Scholar]
  24. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES