Abstract
Partition of sized FITC-dextrans in polyacrylamide gel showed a relationship between Kav and solute radius as predicted by the theory of Ogston, which is based solely on geometry of the spaces. Permeability data for the same dextrans were fit to several theories, including those based on geometry and those based on hydrodynamic interactions, and the gel structure predicted by the partition and permeability data were compared. The Brinkman effective-medium model (based on hydrodynamic interactions and requiring a measure of the hydraulic conductivity of the matrix) gave the best fit of permeability data with the values for fiber radius (rf) and void volume of the gel (epsilon) that were obtained from the partition data. The models based on geometry and the hydrodynamic screening model of Cukier, using the rf and epsilon from partition data, all predicted higher rates of permeation than observed experimentally, while the effective-medium model with added term for steric interaction predicted lower permeation than that observed. The size of cylindrical pores appropriate for the partition data predicted higher rates of permeation than observed. These relative results were unaffected by the method of estimating void volume of the gel. In sum, it appears that one can use data on partition of solute, combined with measurement of hydraulic conductivity, to predict solute permeation in polyacrylamide gel.
Full Text
The Full Text of this article is available as a PDF (143.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Curry F. E., Michel C. C. A fiber matrix model of capillary permeability. Microvasc Res. 1980 Jul;20(1):96–99. doi: 10.1016/0026-2862(80)90024-2. [DOI] [PubMed] [Google Scholar]
- Deen W. M., Bridges C. R., Brenner B. M., Myers B. D. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985 Sep;249(3 Pt 2):F374–F389. doi: 10.1152/ajprenal.1985.249.3.F374. [DOI] [PubMed] [Google Scholar]
- Johnson E. M., Berk D. A., Jain R. K., Deen W. M. Diffusion and partitioning of proteins in charged agarose gels. Biophys J. 1995 Apr;68(4):1561–1568. doi: 10.1016/S0006-3495(95)80328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson E. M., Berk D. A., Jain R. K., Deen W. M. Hindered diffusion in agarose gels: test of effective medium model. Biophys J. 1996 Feb;70(2):1017–1023. doi: 10.1016/S0006-3495(96)79645-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. D., Luby-Phelps K. Tracer diffusion through F-actin: effect of filament length and cross-linking. Biophys J. 1996 Nov;71(5):2742–2750. doi: 10.1016/S0006-3495(96)79467-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz M. A., LaMarche M. Fiber matrix descriptors from permeability data without requiring membrane thickness: theory, results, and optimization. Microcirculation. 1994 Jul;1(2):111–119. doi: 10.3109/10739689409148266. [DOI] [PubMed] [Google Scholar]
- Katz M. A., Schaeffer R. C., Jr Convection of macromolecules is the dominant mode of transport across horizontal 0.4- and 3-microns filters in diffusion chambers: significance for biologic monolayer permeability assessment. Microvasc Res. 1991 Mar;41(2):149–163. doi: 10.1016/0026-2862(91)90017-6. [DOI] [PubMed] [Google Scholar]
- Katz M. A. Structural change in fiber matrix allows for enhanced permeability and reduced hydraulic conductivity. Microvasc Res. 1992 Jan;43(1):1–6. doi: 10.1016/0026-2862(92)90002-7. [DOI] [PubMed] [Google Scholar]
- LAUFFER M. A. Theory of diffusion in gels. Biophys J. 1961 Jan;1:205–213. doi: 10.1016/s0006-3495(61)86884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minton A. P. Thermodynamic nonideality and the dependence of partition coefficient upon solute concentration in exclusion chromatography. Application to self-associating and non-self-associating solutes. Application to hemoglobin. Biophys Chem. 1980 Dec;12(3-4):271–277. doi: 10.1016/0301-4622(80)80004-4. [DOI] [PubMed] [Google Scholar]
- Moussaoui M., Benlyas M., Wahl P. Diffusion of proteins in Sepharose Cl-B gels. J Chromatogr. 1992 Feb 7;591(1-2):115–120. doi: 10.1016/0021-9673(92)80228-m. [DOI] [PubMed] [Google Scholar]
- Oliver J. D., 3rd, Anderson S., Troy J. L., Brenner B. M., Deen W. H. Determination of glomerular size-selectivity in the normal rat with Ficoll. J Am Soc Nephrol. 1992 Aug;3(2):214–228. doi: 10.1681/ASN.V32214. [DOI] [PubMed] [Google Scholar]
- Rivers R. L., McAteer J. A., Clendenon J. L., Connors B. A., Evan A. P., Williams J. C., Jr Apical membrane permeability of MDCK cells. Am J Physiol. 1996 Jul;271(1 Pt 1):C226–C234. doi: 10.1152/ajpcell.1996.271.1.C226. [DOI] [PubMed] [Google Scholar]
- Rüchel R., Brager M. D. Scanning electron microscopic observations of polyacrylamide gels. Anal Biochem. 1975 Oct;68(2):415–428. doi: 10.1016/0003-2697(75)90637-5. [DOI] [PubMed] [Google Scholar]
- Schnitzer J. E. Analysis of steric partition behavior of molecules in membranes using statistical physics. Application to gel chromatography and electrophoresis. Biophys J. 1988 Dec;54(6):1065–1076. doi: 10.1016/S0006-3495(88)83043-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnitzer J. E. Fiber matrix model reanalysis: matrix exclusion limits define effective pore radius describing capillary and glomerular permselectivity. Microvasc Res. 1992 May;43(3):342–346. doi: 10.1016/0026-2862(92)90030-s. [DOI] [PubMed] [Google Scholar]
- Tong J., Anderson J. L. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys J. 1996 Mar;70(3):1505–1513. doi: 10.1016/S0006-3495(96)79712-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. C., Jr Permeability of basement membranes to macromolecules. Proc Soc Exp Biol Med. 1994 Oct;207(1):13–19. doi: 10.3181/00379727-207-43782b. [DOI] [PubMed] [Google Scholar]