Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):573–582. doi: 10.1016/S0006-3495(98)77548-4

Hydration structure of antithrombin conformers and water transfer during reactive loop insertion.

J Liang 1, M P McGee 1
PMCID: PMC1299733  PMID: 9675160

Abstract

The serine protease inhibitor antithrombin undergoes extensive conformational changes during functional interaction with its target proteases. Changes include insertion of the reactive loop region into a beta-sheet structure in the protein core. We explore the possibility that these changes are linked to water transfer. Volumes of water transferred during inhibition of coagulation factor Xa are compared to water-permeable volumes in the x-ray structure of two different antithrombin conformers. In one conformer, the reactive loop is largely exposed to solvent, and in the other, the loop is inserted. Hydration fingerprints of antithrombin (that is, water-permeable pockets) are analyzed to determine their location, volume, and size of access pores, using alpha shape-based methods from computational geometry. Water transfer during reactions is calculated from changes in rate with osmotic pressure. Hydration fingerprints prove markedly different in the two conformers. There is an excess of 61-76 water molecules in loop-exposed as compared to loop-inserted conformers. Quantitatively, rate increases with osmotic pressure are consistent with the transfer of 73 +/- 7 water molecules. This study demonstrates that conformational changes of antithrombin, including loop insertion, are linked to water transfer from antithrombin to bulk solution. It also illustrates the combined use of osmotic stress and analytical geometry as a new and effective tool for structure/function studies.

Full Text

The Full Text of this article is available as a PDF (809.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
  2. Atha D. H., Ingham K. C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem. 1981 Dec 10;256(23):12108–12117. [PubMed] [Google Scholar]
  3. Bryant R. G. The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct. 1996;25:29–53. doi: 10.1146/annurev.bb.25.060196.000333. [DOI] [PubMed] [Google Scholar]
  4. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  5. Carrell R. W., Stein P. E. The biostructural pathology of the serpins: critical function of sheet opening mechanism. Biol Chem Hoppe Seyler. 1996 Jan;377(1):1–17. doi: 10.1515/bchm3.1996.377.1.1. [DOI] [PubMed] [Google Scholar]
  6. Craig P. A., Olson S. T., Shore J. D. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J Biol Chem. 1989 Apr 5;264(10):5452–5461. [PubMed] [Google Scholar]
  7. Gerstein M., Chothia C. Packing at the protein-water interface. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10167–10172. doi: 10.1073/pnas.93.19.10167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerstein M., Tsai J., Levitt M. The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol. 1995 Jun 23;249(5):955–966. doi: 10.1006/jmbi.1995.0351. [DOI] [PubMed] [Google Scholar]
  9. Huntington J. A., Olson S. T., Fan B., Gettins P. G. Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding. Biochemistry. 1996 Jul 2;35(26):8495–8503. doi: 10.1021/bi9604643. [DOI] [PubMed] [Google Scholar]
  10. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  11. Kim S., Liang J., Barry B. A. Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14406–14411. doi: 10.1073/pnas.94.26.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuznetsova N., Rau D. C., Parsegian V. A., Leikin S. Solvent hydrogen-bond network in protein self-assembly: solvation of collagen triple helices in nonaqueous solvents. Biophys J. 1997 Jan;72(1):353–362. doi: 10.1016/S0006-3495(97)78674-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liang J., Subramaniam S. Computation of molecular electrostatics with boundary element methods. Biophys J. 1997 Oct;73(4):1830–1841. doi: 10.1016/S0006-3495(97)78213-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGee M. P., Li L. C. Functional difference between intrinsic and extrinsic coagulation pathways. Kinetics of factor X activation on human monocytes and alveolar macrophages. J Biol Chem. 1991 May 5;266(13):8079–8085. [PubMed] [Google Scholar]
  15. McGee M. P., Teuschler H. Protein hydration during generation of coagulation factor Xa in aqueous phase and on phospholipid membranes. J Biol Chem. 1995 Jun 23;270(25):15170–15174. doi: 10.1074/jbc.270.25.15170. [DOI] [PubMed] [Google Scholar]
  16. Olds R. J., Lane D. A., Mille B., Chowdhury V., Thein S. L. Antithrombin: the principal inhibitor of thrombin. Semin Thromb Hemost. 1994;20(4):353–372. doi: 10.1055/s-2007-1001927. [DOI] [PubMed] [Google Scholar]
  17. Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
  18. Olson S. T., Björk I. Regulation of thrombin activity by antithrombin and heparin. Semin Thromb Hemost. 1994;20(4):373–409. doi: 10.1055/s-2007-1001928. [DOI] [PubMed] [Google Scholar]
  19. Olson S. T., Björk I., Shore J. D. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 1993;222:525–559. doi: 10.1016/0076-6879(93)22033-c. [DOI] [PubMed] [Google Scholar]
  20. Olson S. T. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Linkage of protease-inhibitor-heparin interactions in the reaction with thrombin. J Biol Chem. 1988 Feb 5;263(4):1698–1708. [PubMed] [Google Scholar]
  21. Parsegian V. A., Rand R. P., Rau D. C. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94. doi: 10.1016/0076-6879(95)59039-0. [DOI] [PubMed] [Google Scholar]
  22. Peters K. P., Fauck J., Frömmel C. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol. 1996 Feb 16;256(1):201–213. doi: 10.1006/jmbi.1996.0077. [DOI] [PubMed] [Google Scholar]
  23. Rand R. P. Raising water to new heights. Science. 1992 May 1;256(5057):618–618. doi: 10.1126/science.256.5057.618. [DOI] [PubMed] [Google Scholar]
  24. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  25. Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
  26. Squire P. G., Himmel M. E. Hydrodynamics and protein hydration. Arch Biochem Biophys. 1979 Aug;196(1):165–177. doi: 10.1016/0003-9861(79)90563-0. [DOI] [PubMed] [Google Scholar]
  27. van Boeckel C. A., Grootenhuis P. D., Visser A. A mechanism for heparin-induced potentiation of antithrombin III. Nat Struct Biol. 1994 Jul;1(7):423–425. doi: 10.1038/nsb0794-423. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES