Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):695–703. doi: 10.1016/S0006-3495(98)77559-9

Imaging of the surface of living cells by low-force contact-mode atomic force microscopy.

C Le Grimellec 1, E Lesniewska 1, M C Giocondi 1, E Finot 1, V Vié 1, J P Goudonnet 1
PMCID: PMC1299744  PMID: 9675171

Abstract

The membrane surface of living CV-1 kidney cells in culture was imaged by contact-mode atomic force microscopy using scanning forces in the piconewton range. A simple procedure was developed for imaging of the cell surface with forces as low as 20-50 pN, i.e., two orders of magnitude below those commonly used for cell imaging. Under these conditions, the indentation of the cells by the tip could be reduced to less than l0 nm, even at the cell center, which gave access to the topographic image of the cell surface. This surface appeared heterogeneous with very few villosities and revealed, only in distinct areas, the submembrane cytoskeleton. At intermediate magnifications, corresponding to 20-5 microm scan sizes, the surface topography likely reflected the organization of submembrane and intracellular structures on which the plasma membrane lay. By decreasing the scan size, a lateral resolution better than 20 nm was routinely obtained for the cell surface, and a lateral resolution better than 10 nm was obtained occasionally. The cell surface appeared granular, with packed particles, likely corresponding to proteins or protein-lipid complexes, between approximately 5 and 30 nm xy size.

Full Text

The Full Text of this article is available as a PDF (530.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butt H. J., Wolff E. K., Gould S. A., Dixon Northern B., Peterson C. M., Hansma P. K. Imaging cells with the atomic force microscope. J Struct Biol. 1990 Oct-Dec;105(1-3):54–61. doi: 10.1016/1047-8477(90)90098-w. [DOI] [PubMed] [Google Scholar]
  2. Fritz M., Radmacher M., Gaub H. E. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J. 1994 May;66(5):1328–1334. doi: 10.1016/S0006-3495(94)80963-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Haydon P. G., Lartius R., Parpura V., Marchese-Ragona S. P. Membrane deformation of living glial cells using atomic force microscopy. J Microsc. 1996 May;182(Pt 2):114–120. doi: 10.1046/j.1365-2818.1996.141423.x. [DOI] [PubMed] [Google Scholar]
  4. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  5. Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
  6. Hörber J. K., Häberle W., Ohnesorge F., Binnig G., Liebich H. G., Czerny C. P., Mahnel H., Mayr A. Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microsc. 1992 Dec;6(4):919–930. [PubMed] [Google Scholar]
  7. Ito E., Takahashi T., Hama K., Yoshioka T., Mizutani W., Shimizu H., Ono M. An approach to imaging of living cell surface topography by scanning tunneling microscopy. Biochem Biophys Res Commun. 1991 Jun 14;177(2):636–643. doi: 10.1016/0006-291x(91)91836-2. [DOI] [PubMed] [Google Scholar]
  8. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  9. Le Grimellec C., Lesniewska E., Cachia C., Schreiber J. P., de Fornel F., Goudonnet J. P. Imaging of the membrane surface of MDCK cells by atomic force microscopy. Biophys J. 1994 Jul;67(1):36–41. doi: 10.1016/S0006-3495(94)80490-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Le Grimellec C., Lesniewska E., Giocondi M. C., Cachia C., Schreiber J. P., Goudonnet J. P. Imaging of the cytoplasmic leaflet of the plasma membrane by atomic force microscopy. Scanning Microsc. 1995 Jun;9(2):401–411. [PubMed] [Google Scholar]
  11. Le Grimellec C., Lesniewska E., Giocondi M. C., Finot E., Goudonnet J. P. Simultaneous imaging of the surface and the submembraneous cytoskeleton in living cells by tapping mode atomic force microscopy. C R Acad Sci III. 1997 Aug;320(8):637–643. doi: 10.1016/s0764-4469(97)85697-1. [DOI] [PubMed] [Google Scholar]
  12. Lärmer J., Schneider S. W., Danker T., Schwab A., Oberleithner H. Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy. Pflugers Arch. 1997 Jul;434(3):254–260. doi: 10.1007/s004240050393. [DOI] [PubMed] [Google Scholar]
  13. Müller D. J., Büldt G., Engel A. Force-induced conformational change of bacteriorhodopsin. J Mol Biol. 1995 Jun 2;249(2):239–243. doi: 10.1006/jmbi.1995.0292. [DOI] [PubMed] [Google Scholar]
  14. Müller D. J., Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J. 1997 Sep;73(3):1633–1644. doi: 10.1016/S0006-3495(97)78195-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oberleithner H., Giebisch G., Geibel J. Imaging the lamellipodium of migrating epithelial cells in vivo by atomic force microscopy. Pflugers Arch. 1993 Dec;425(5-6):506–510. doi: 10.1007/BF00374878. [DOI] [PubMed] [Google Scholar]
  17. Putman C. A., van der Werf K. O., de Grooth B. G., van Hulst N. F., Greve J. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J. 1994 Oct;67(4):1749–1753. doi: 10.1016/S0006-3495(94)80649-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Radmacher M., Fritz M., Hansma P. K. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J. 1995 Jul;69(1):264–270. doi: 10.1016/S0006-3495(95)79897-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Radmacher M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag. 1997 Mar-Apr;16(2):47–57. doi: 10.1109/51.582176. [DOI] [PubMed] [Google Scholar]
  21. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  22. Ruppersberg J. P., Hörber J. K., Gerber C., Binnig G. Imaging of cell membraneous and cytoskeletal structures with a scanning tunneling microscope. FEBS Lett. 1989 Nov 6;257(2):460–464. doi: 10.1016/0014-5793(89)81596-0. [DOI] [PubMed] [Google Scholar]
  23. Schaus S. S., Henderson E. R. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J. 1997 Sep;73(3):1205–1214. doi: 10.1016/S0006-3495(97)78153-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES