Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):714–720. doi: 10.1016/S0006-3495(98)77561-7

Topological defects and the optimum size of DNA condensates.

S Y Park 1, D Harries 1, W M Gelbart 1
PMCID: PMC1299746  PMID: 9675173

Abstract

Under a wide variety of conditions, the addition of condensing agents to dilute solutions of random-coil DNA gives rise to highly compact particles that are toroidal in shape. The size of these condensates is remarkably constant and is largely independent of DNA molecular weight and basepair sequence, and of the nature of condensing agent (e.g., multivalent cation, polymers, or added cosolvent). We show how this optimum size is determined by the interactions between topological defects, which unavoidably strain the circumferentially wound DNA strands in the torus.

Full Text

The Full Text of this article is available as a PDF (85.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
  2. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  3. Grosberg AYu, Zhestkov A. V. On the compact form of linear duplex DNA: globular states of the uniform elastic (persistent) macromolecule. J Biomol Struct Dyn. 1986 Apr;3(5):859–872. doi: 10.1080/07391102.1986.10508469. [DOI] [PubMed] [Google Scholar]
  4. Hud N. V., Downing K. H., Balhorn R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3581–3585. doi: 10.1073/pnas.92.8.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kornberg R. D., Lorch Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. doi: 10.1146/annurev.cb.08.110192.003023. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4288–4292. doi: 10.1073/pnas.72.11.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lepault J., Dubochet J., Baschong W., Kellenberger E. Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J. 1987 May;6(5):1507–1512. doi: 10.1002/j.1460-2075.1987.tb02393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lerman L. S. Chromosomal analogues: long-range order in psi-condensed DNA. Cold Spring Harb Symp Quant Biol. 1974;38:59–73. doi: 10.1101/sqb.1974.038.01.009. [DOI] [PubMed] [Google Scholar]
  9. Livolant F. Cholesteric organization of DNA in vivo and in vitro. Eur J Cell Biol. 1984 Mar;33(2):300–311. [PubMed] [Google Scholar]
  10. Maniatis T., Venable J. H., Jr, Lerman L. S. The structure of psi DNA. J Mol Biol. 1974 Mar 25;84(1):37–64. doi: 10.1016/0022-2836(74)90211-3. [DOI] [PubMed] [Google Scholar]
  11. Manning G. S. Packaged DNA. An elastic model. Cell Biophys. 1985 Mar;7(1):57–89. doi: 10.1007/BF02788639. [DOI] [PubMed] [Google Scholar]
  12. Manning G. S. Thermodynamic stability theory for DNA doughnut shapes induced by charge neutralization. Biopolymers. 1980 Jan;19(1):37–59. doi: 10.1002/bip.1980.360190104. [DOI] [PubMed] [Google Scholar]
  13. Marx K. A., Ruben G. C. Evidence for hydrated spermidine-calf thymus DNA toruses organized by circumferential DNA wrapping. Nucleic Acids Res. 1983 Mar 25;11(6):1839–1854. doi: 10.1093/nar/11.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Naruszewicz M., Selinger E., Davignon J. Oxidative modification of lipoprotein(a) and the effect of beta-carotene. Metabolism. 1992 Nov;41(11):1215–1224. doi: 10.1016/0026-0495(92)90012-y. [DOI] [PubMed] [Google Scholar]
  15. Ramakrishnan V. Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct. 1997;26:83–112. doi: 10.1146/annurev.biophys.26.1.83. [DOI] [PubMed] [Google Scholar]
  16. Reich Z., Ghirlando R., Minsky A. Nucleic acids packaging processes: effects of adenine tracts and sequence-dependent curvature. J Biomol Struct Dyn. 1992 Jun;9(6):1097–1109. doi: 10.1080/07391102.1992.10507981. [DOI] [PubMed] [Google Scholar]
  17. Schnell J. R., Berman J., Bloomfield V. A. Insertion of telomere repeat sequence decreases plasmid DNA condensation by cobalt (III) hexaammine. Biophys J. 1998 Mar;74(3):1484–1491. doi: 10.1016/S0006-3495(98)77860-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ubbink J., Odijk T. Polymer- and salt-induced toroids of hexagonal DNA. Biophys J. 1995 Jan;68(1):54–61. doi: 10.1016/S0006-3495(95)80158-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Widom J., Baldwin R. L. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol. 1980 Dec 25;144(4):431–453. doi: 10.1016/0022-2836(80)90330-7. [DOI] [PubMed] [Google Scholar]
  20. Yoshikawa Y., Yoshikawa K., Kanbe T. Daunomycin unfolds compactly packed DNA. Biophys Chem. 1996 Oct 30;61(2-3):93–100. doi: 10.1016/s0301-4622(96)02184-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES