Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):867–879. doi: 10.1016/S0006-3495(98)77575-7

Tracking phospholipid populations in polymorphism by sideband analyses of 31P magic angle spinning NMR.

L Moran 1, N Janes 1
PMCID: PMC1299760  PMID: 9675187

Abstract

A method was developed to track the distributional preferences of phospholipids in polymorphism based on sideband analyses of the 31P magic angle spinning nuclear magnetic resonance spectra. The method was applied to lipid mixtures containing phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and either cholesterol (Chol) or tetradecane, as well as mixtures containing the anionic phosphatidylmethanol, phosphatidylethanolamine, and diolein. The phospholipid composition of coexisting lamellar (Lalpha) and inverted hexagonal (HII) phases remained constant throughout the Lalpha --> HII transition in all mixtures, except those that contained saturated PtdCho and unsaturated PtdEtn in the presence of cholesterol-mixtures that are known to be microimmiscible because of favored associations between Chol and saturated acyl chains. In the latter mixture, saturated PtdCho was enriched in the planar bilayer structure, and unsaturated PtdEtn was enriched in the highly curved HII structure. This enrichment was coincident with an increase in the transition width. When compositional heterogeneity among coexisting phases was observed, it appeared that preexisting lateral microheterogeneities led to compositionally distinct transitional clusters, such that the distributional preferences that resulted were not those of the individual phospholipids.

Full Text

The Full Text of this article is available as a PDF (135.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boni L. T., Hui S. W. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases. Biochim Biophys Acta. 1983 Jun 10;731(2):177–185. doi: 10.1016/0005-2736(83)90007-x. [DOI] [PubMed] [Google Scholar]
  2. Cheetham J. J., Wachtel E., Bach D., Epand R. M. Role of the stereochemistry of the hydroxyl group of cholesterol and the formation of nonbilayer structures in phosphatidylethanolamines. Biochemistry. 1989 Oct 31;28(22):8928–8934. doi: 10.1021/bi00448a036. [DOI] [PubMed] [Google Scholar]
  3. Epand R. M., Bottega R. Determination of the phase behaviour of phosphatidylethanolamine admixed with other lipids and the effects of calcium chloride: implications for protein kinase C regulation. Biochim Biophys Acta. 1988 Oct 6;944(2):144–154. doi: 10.1016/0005-2736(88)90427-0. [DOI] [PubMed] [Google Scholar]
  4. Epand R. M., Bottega R. Modulation of the phase transition behavior of phosphatidylethanolamine by cholesterol and oxysterols. Biochemistry. 1987 Apr 7;26(7):1820–1825. doi: 10.1021/bi00381a005. [DOI] [PubMed] [Google Scholar]
  5. Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
  6. Epand R. M., Lemay C. T. Lipid concentration affects the kinetic stability of dielaidoylphosphatidylethanolamine bilayers. Chem Phys Lipids. 1993 Dec;66(3):181–187. doi: 10.1016/0009-3084(93)90003-l. [DOI] [PubMed] [Google Scholar]
  7. Epand R. M., Robinson K. S., Andrews M. E., Epand R. F. Dependence of the bilayer to hexagonal phase transition on amphiphile chain length. Biochemistry. 1989 Nov 28;28(24):9398–9402. doi: 10.1021/bi00450a022. [DOI] [PubMed] [Google Scholar]
  8. Epand R. M. Studies of membrane physical properties and their role in biological function. Biochem Soc Trans. 1997 Aug;25(3):1073–1079. doi: 10.1042/bst0251073a. [DOI] [PubMed] [Google Scholar]
  9. Fenske D. B., Cullis P. R. Chemical exchange between lamellar and non-lamellar lipid phases. A one- and two-dimensional 31P-NMR study. Biochim Biophys Acta. 1992 Jul 27;1108(2):201–209. doi: 10.1016/0005-2736(92)90026-i. [DOI] [PubMed] [Google Scholar]
  10. Hornby A. P., Cullis P. R. Influence of local and neutral anaesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine. Biochim Biophys Acta. 1981 Oct 2;647(2):285–292. doi: 10.1016/0005-2736(81)90256-x. [DOI] [PubMed] [Google Scholar]
  11. Hui S. W., Sen A. Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5825–5829. doi: 10.1073/pnas.86.15.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  13. Janes N., Hsu J. W., Rubin E., Taraschi T. F. Nature of alcohol and anesthetic action on cooperative membrane equilibria. Biochemistry. 1992 Oct 6;31(39):9467–9472. doi: 10.1021/bi00154a020. [DOI] [PubMed] [Google Scholar]
  14. Kusumi A., Subczynski W. K., Pasenkiewicz-Gierula M., Hyde J. S., Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophys Acta. 1986 Jan 29;854(2):307–317. doi: 10.1016/0005-2736(86)90124-0. [DOI] [PubMed] [Google Scholar]
  15. Lee Y. C., Taraschi T. F., Janes N. Support for the shape concept of lipid structure based on a headgroup volume approach. Biophys J. 1993 Oct;65(4):1429–1432. doi: 10.1016/S0006-3495(93)81206-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee Y. C., Zheng Y. O., Taraschi T. F., Janes N. Hydrophobic alkyl headgroups strongly promote membrane curvature and violate the headgroup volume correlation due to "headgroup" insertion. Biochemistry. 1996 Mar 26;35(12):3677–3684. doi: 10.1021/bi9517502. [DOI] [PubMed] [Google Scholar]
  17. Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J. 1993 Apr;64(4):1081–1096. doi: 10.1016/S0006-3495(93)81474-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McIntosh T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978 Oct 19;513(1):43–58. doi: 10.1016/0005-2736(78)90110-4. [DOI] [PubMed] [Google Scholar]
  19. Pasenkiewicz-Gierula M., Subczynski W. K., Kusumi A. Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry. 1990 May 1;29(17):4059–4069. doi: 10.1021/bi00469a006. [DOI] [PubMed] [Google Scholar]
  20. Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
  21. Seddon J. M., Cevc G., Marsh D. Calorimetric studies of the gel-fluid (L beta-L alpha) and lamellar-inverted hexagonal (L alpha-HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry. 1983 Mar 1;22(5):1280–1289. doi: 10.1021/bi00274a045. [DOI] [PubMed] [Google Scholar]
  22. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  23. Shin Y. K., Budil D. E., Freed J. H. Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water. Biophys J. 1993 Sep;65(3):1283–1294. doi: 10.1016/S0006-3495(93)81160-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shin Y. K., Freed J. H. Dynamic imaging of lateral diffusion by electron spin resonance and study of rotational dynamics in model membranes. Effect of cholesterol. Biophys J. 1989 Mar;55(3):537–550. doi: 10.1016/S0006-3495(89)82847-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shin Y. K., Freed J. H. Thermodynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state studied by the orientational order parameter. Biophys J. 1989 Dec;56(6):1093–1100. doi: 10.1016/S0006-3495(89)82757-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shin Y. K., Moscicki J. K., Freed J. H. Dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state. Biophys J. 1990 Mar;57(3):445–459. doi: 10.1016/S0006-3495(90)82561-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shyamsunder E., Gruner S. M., Tate M. W., Turner D. C., So P. T., Tilcock C. P. Observation of inverted cubic phase in hydrated dioleoylphosphatidylethanolamine membranes. Biochemistry. 1988 Apr 5;27(7):2332–2336. doi: 10.1021/bi00407a014. [DOI] [PubMed] [Google Scholar]
  28. Subczynski W. K., Antholine W. E., Hyde J. S., Kusumi A. Microimmiscibility and three-dimensional dynamic structures of phosphatidylcholine-cholesterol membranes: translational diffusion of a copper complex in the membrane. Biochemistry. 1990 Aug 28;29(34):7936–7945. doi: 10.1021/bi00486a023. [DOI] [PubMed] [Google Scholar]
  29. Tate M. W., Gruner S. M. Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and monounsaturated phosphatidylcholines of various chain lengths. Biochemistry. 1987 Jan 13;26(1):231–236. doi: 10.1021/bi00375a031. [DOI] [PubMed] [Google Scholar]
  30. Tilcock C. P., Bally M. B., Farren S. B., Cullis P. R. Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine systems: a phosphorus-31 and deuterium nuclear magnetic resonance study. Biochemistry. 1982 Sep 14;21(19):4596–4601. doi: 10.1021/bi00262a013. [DOI] [PubMed] [Google Scholar]
  31. Tilcock C. P., Cullis P. R. The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Biochim Biophys Acta. 1981 Feb 20;641(1):189–201. doi: 10.1016/0005-2736(81)90583-6. [DOI] [PubMed] [Google Scholar]
  32. Victorov A. V., Janes N., Taraschi T. F., Hoek J. B. Packing constraints and electrostatic surface potentials determine transmembrane asymmetry of phosphatidylethanol. Biophys J. 1997 Jun;72(6):2588–2598. doi: 10.1016/S0006-3495(97)78902-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Kruijff B. Biomembranes. Lipids beyond the bilayer. Nature. 1997 Mar 13;386(6621):129–130. doi: 10.1038/386129a0. [DOI] [PubMed] [Google Scholar]
  34. de Kruijff B., Verkley A. J., van Echteld C. J., Gerritsen W. J., Mombers C., Noordam P. C., de Gier J. The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron-microscopy. Biochim Biophys Acta. 1979 Aug 7;555(2):200–209. doi: 10.1016/0005-2736(79)90160-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES