Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):880–888. doi: 10.1016/S0006-3495(98)77576-9

The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers.

G C Troiano 1, L Tung 1, V Sharma 1, K J Stebe 1
PMCID: PMC1299761  PMID: 9675188

Abstract

The effects of a nonionic surfactant, octaethyleneglycol mono n-dodecyl ether (C12E8), on the electroporation of planar bilayer lipid membranes made of the synthetic lipid 1-pamitoyl 2-oleoyl phosphatidylcholine (POPC), was studied. High-amplitude ( approximately 100-450 mV) rectangular voltage pulses were used to electroporate the bilayers, followed by a prolonged, low-amplitude ( approximately 65 mV) voltage clamp to monitor the ensuing changes in transmembrane conductance. The electroporation thresholds of the membranes were found for rectangular voltage pulses of given durations. The strength-duration relationship was determined over a range from 10 micros to 10 s. The addition of C12E8 at concentrations of 0.1, 1, and 10 microM to the bath surrounding the membranes decreased the electroporation threshold monotonically with concentration for all durations (p < 0.0001). The decrease from control values ranged from 10% to 40%, depending on surfactant concentration and pulse duration. For a 10-micros pulse, the transmembrane conductance 150 micros after electroporation (G150) increased monotonically with the surfactant concentration (p = 0.007 for 10 microM C12E8). These findings suggest that C12E8 incorporates into POPC bilayers, allowing electroporation at lower intensities and/or shorter durations, and demonstrate that surfactants can be used to manipulate the electroporation threshold of lipid bilayers.

Full Text

The Full Text of this article is available as a PDF (100.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Champeil P., le Maire M., Andersen J. P., Guillain F., Gingold M., Lund S., Møller J. V. Kinetic characterization of the normal and detergent-perturbed reaction cycles of the sarcoplasmic reticulum calcium pump. Rate-limiting step(s) under different conditions. J Biol Chem. 1986 Dec 15;261(35):16372–16384. [PubMed] [Google Scholar]
  2. Chernomordik L. V., Sukharev S. I., Popov S. V., Pastushenko V. F., Sokirko A. V., Abidor I. G., Chizmadzhev Y. A. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta. 1987 Sep 3;902(3):360–373. doi: 10.1016/0005-2736(87)90204-5. [DOI] [PubMed] [Google Scholar]
  3. Crowley J. M. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J. 1973 Jul;13(7):711–724. doi: 10.1016/S0006-3495(73)86017-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dimitrov D. S. Electric field-induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic film model. J Membr Biol. 1984;78(1):53–60. doi: 10.1007/BF01872532. [DOI] [PubMed] [Google Scholar]
  5. Gabriel B., Teissié J. Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim Biophys Acta. 1995 Apr 28;1266(2):171–178. doi: 10.1016/0167-4889(95)00021-j. [DOI] [PubMed] [Google Scholar]
  6. Highsmith S. On the mechanism of detergent modification of myosin structure and function. J Biochem. 1990 Apr;107(4):554–558. doi: 10.1093/oxfordjournals.jbchem.a123085. [DOI] [PubMed] [Google Scholar]
  7. Hui S. W. Effects of pulse length and strength on electroporation efficiency. Methods Mol Biol. 1995;48:29–40. doi: 10.1385/0-89603-304-X:29. [DOI] [PubMed] [Google Scholar]
  8. Hui S. W., Stoicheva N., Zhao Y. L. High-efficiency loading, transfection, and fusion of cells by electroporation in two-phase polymer systems. Biophys J. 1996 Aug;71(2):1123–1130. doi: 10.1016/S0006-3495(96)79314-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinosita K., Jr, Tsong T. Y. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature. 1977 Aug 4;268(5619):438–441. doi: 10.1038/268438a0. [DOI] [PubMed] [Google Scholar]
  10. Le Maire M., Kwee S., Andersen J. P., Møller J. V. Mode of interaction of polyoxyethyleneglycol detergents with membrane proteins. Eur J Biochem. 1983 Jan 1;129(3):525–532. doi: 10.1111/j.1432-1033.1983.tb07080.x. [DOI] [PubMed] [Google Scholar]
  11. Lee R. C., Kolodney M. S. Electrical injury mechanisms: dynamics of the thermal response. Plast Reconstr Surg. 1987 Nov;80(5):663–671. [PubMed] [Google Scholar]
  12. Lee R. C., River L. P., Pan F. S., Ji L., Wollmann R. L. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4524–4528. doi: 10.1073/pnas.89.10.4524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levy D., Gulik A., Seigneuret M., Rigaud J. L. Phospholipid vesicle solubilization and reconstitution by detergents. Symmetrical analysis of the two processes using octaethylene glycol mono-n-dodecyl ether. Biochemistry. 1990 Oct 9;29(40):9480–9488. doi: 10.1021/bi00492a022. [DOI] [PubMed] [Google Scholar]
  14. Lu Y. Z., Kirchberger M. A. Effects of a nonionic detergent on calcium uptake by cardiac microsomes. Biochemistry. 1994 May 3;33(17):5056–5062. doi: 10.1021/bi00183a008. [DOI] [PubMed] [Google Scholar]
  15. Miklavcic D., An D., Belehradek J., Jr, Mir L. M. Host's immune response in electrotherapy of murine tumors by direct current. Eur Cytokine Netw. 1997 Sep;8(3):275–279. [PubMed] [Google Scholar]
  16. Mimura K., Matsui H., Takagi T., Hayashi Y. Change in oligomeric structure of solubilized Na+/K(+)-ATPase induced by octaethylene glycol dodecyl ether, phosphatidylserine and ATP. Biochim Biophys Acta. 1993 Jan 18;1145(1):63–74. doi: 10.1016/0005-2736(93)90382-a. [DOI] [PubMed] [Google Scholar]
  17. Mir L. M. L'électrochimiothérapie antitumorale. Bull Cancer. 1994 Sep;81(9):740–748. [PubMed] [Google Scholar]
  18. Mouneimne Y., Tosi P. F., Gazitt Y., Nicolau C. Electro-insertion of xeno-glycophorin into the red blood cell membrane. Biochem Biophys Res Commun. 1989 Feb 28;159(1):34–40. doi: 10.1016/0006-291x(89)92400-5. [DOI] [PubMed] [Google Scholar]
  19. Møller J. V., le Maire M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem. 1993 Sep 5;268(25):18659–18672. [PubMed] [Google Scholar]
  20. Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neumann E., Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972 Dec 29;10(3):279–290. doi: 10.1007/BF01867861. [DOI] [PubMed] [Google Scholar]
  22. Prausnitz M. R., Bose V. G., Langer R., Weaver J. C. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10504–10508. doi: 10.1073/pnas.90.22.10504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sharma V., Stebe K., Murphy J. C., Tung L. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation. Biophys J. 1996 Dec;71(6):3229–3241. doi: 10.1016/S0006-3495(96)79516-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sixou S., Teissié J. In vivo targeting of inflamed areas by electroloaded neutrophils. Biochem Biophys Res Commun. 1992 Jul 31;186(2):860–866. doi: 10.1016/0006-291x(92)90825-6. [DOI] [PubMed] [Google Scholar]
  25. Tsong T. Y. Electroporation of cell membranes. Biophys J. 1991 Aug;60(2):297–306. doi: 10.1016/S0006-3495(91)82054-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weaver J. C. Electroporation theory. Concepts and mechanisms. Methods Mol Biol. 1995;47:1–26. doi: 10.1385/0-89603-310-4:1. [DOI] [PubMed] [Google Scholar]
  27. Wilhelm C., Winterhalter M., Zimmermann U., Benz R. Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes. Biophys J. 1993 Jan;64(1):121–128. doi: 10.1016/S0006-3495(93)81346-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wolf H., Rols M. P., Boldt E., Neumann E., Teissié J. Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J. 1994 Feb;66(2 Pt 1):524–531. doi: 10.1016/s0006-3495(94)80805-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhelev D. V. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes. Biophys J. 1996 Jul;71(1):257–273. doi: 10.1016/S0006-3495(96)79222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta. 1982 Nov 30;694(3):227–277. doi: 10.1016/0304-4157(82)90007-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES