Abstract
The binding of dextran sulfates (DSs) with varying chain lengths to phosphatidylcholine multilamellar vesicles was investigated as a function of polyelectrolyte, NaCl, and Ca2+ concentration. Attractive forces between negatively charged polyelectrolytes and zwitterionic phospholipids arise from the assembly of calcium bridges. The formation of calcium bridges between the sulfate groups on the dextran sulfate and the phosphate group of the lipid results in increased calcium binding in mixtures of DS and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). At high NaCl concentration, the plateau adsorption of DS 500 is increased. The strength of dextran sulfate binding to DMPC is reflected in the changes of the 2H NMR quadrupolar splittings of the headgroup methylenes. Association forces increase with the number of calcium bridges formed. Low-molecular-weight DS does not bind to DMPC surfaces whereas longer-chain DSs strongly influence headgroup structure as a result of strong association. DS binding increases with increasing concentration; however, further association of the polyelectrolyte can be promoted only if negative charges are sufficiently screened. DS binding to lipid bilayers is a complicated balance of calcium bridging and charge screening. From our data we postulate that the structure of the adsorbed layer resembles a lattice of DS strands sandwiched between the bilayer lamellae.
Full Text
The Full Text of this article is available as a PDF (89.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenbach C., Seelig J. Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules. Biochemistry. 1984 Aug 14;23(17):3913–3920. doi: 10.1021/bi00312a019. [DOI] [PubMed] [Google Scholar]
- Arnold K., Arnhold J., Zschörnig O., Wiegel D., Krumbiegel M. Characterization of chemical modifications of surface properties of low density lipoproteins. Biomed Biochim Acta. 1989;48(10):735–742. [PubMed] [Google Scholar]
- Arnold K., Ohki S., Krumbiegel M. Interaction of dextran sulfate with phospholipid surfaces and liposome aggregation and fusion. Chem Phys Lipids. 1990 Sep;55(3):301–307. doi: 10.1016/0009-3084(90)90168-q. [DOI] [PubMed] [Google Scholar]
- Camejo G., López A., López F., Quiñones J. Interaction of low density lipoproteins with arterial proteoglycans. The role of charge and sialic acid content. Atherosclerosis. 1985 Apr;55(1):93–105. doi: 10.1016/0021-9150(85)90169-8. [DOI] [PubMed] [Google Scholar]
- Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Cardin A. D., Jackson R. L., Elledge B., Feldhake D. Dependence on heparin chain-length of the interaction of heparin with human plasma low density lipoproteins. Int J Biol Macromol. 1989 Feb;11(1):59–62. doi: 10.1016/0141-8130(89)90042-1. [DOI] [PubMed] [Google Scholar]
- Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
- Fenske D. B., Cushley R. J. Insoluble complex formation between low density lipoprotein and heparin. A 31P-NMR study. Chem Phys Lipids. 1990 Apr;54(1):9–16. doi: 10.1016/0009-3084(90)90054-u. [DOI] [PubMed] [Google Scholar]
- Fenske D. B., Cushley R. J. Soluble complex formation between low-density lipoprotein and glycosaminoglycans. A 2H and 31P-NMR, and quasi-elastic light scattering study. Chem Phys Lipids. 1988 Nov;49(1-2):15–29. doi: 10.1016/0009-3084(88)90060-6. [DOI] [PubMed] [Google Scholar]
- Gigli M., Consonni A., Ghiselli G., Rizzo V., Naggi A., Torri G. Heparin binding to human plasma low-density lipoproteins: dependence on heparin sulfation degree and chain length. Biochemistry. 1992 Jul 7;31(26):5996–6003. doi: 10.1021/bi00141a006. [DOI] [PubMed] [Google Scholar]
- Iverius P. H. The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem. 1972 Apr 25;247(8):2607–2613. [PubMed] [Google Scholar]
- Kim Y. C., Nishida T. Nature of interaction of dextran sulfate with lecithin dispersions and lysolecithin micelles. J Biol Chem. 1977 Feb 25;252(4):1243–1249. [PubMed] [Google Scholar]
- Kim Y. C., Nishida T. Nature of the interaction of dextran sulfate with high and low density lipoproteins in the presence of Ca2+. J Biol Chem. 1979 Oct 10;254(19):9621–9626. [PubMed] [Google Scholar]
- Krumbiegel M., Arnold K. Microelectrophoresis studies of the binding of glycosaminoglycans to phosphatidylcholine liposomes. Chem Phys Lipids. 1990 Apr;54(1):1–7. doi: 10.1016/0009-3084(90)90053-t. [DOI] [PubMed] [Google Scholar]
- Lerner L., Torchia D. A. A multinuclear NMR study of the interactions of cations with proteoglycans, heparin, and Ficoll. J Biol Chem. 1986 Sep 25;261(27):12706–12714. [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- Marassi F. M., Macdonald P. M. Response of the phosphatidylcholine headgroup to membrane surface charge in ternary mixtures of neutral, cationic, and anionic lipids: a deuterium NMR study. Biochemistry. 1992 Oct 20;31(41):10031–10036. doi: 10.1021/bi00156a024. [DOI] [PubMed] [Google Scholar]
- Mitrakos P., Macdonald P. M. DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR. Biochemistry. 1996 Dec 24;35(51):16714–16722. doi: 10.1021/bi961911h. [DOI] [PubMed] [Google Scholar]
- Nishida T., Cogan U. Nature of the interaction of dextran sulfate with low density lipoproteins of plasma. J Biol Chem. 1970 Sep 25;245(18):4689–4697. [PubMed] [Google Scholar]
- Ohki S., Düzgüneş N., Leonards K. Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry. 1982 Apr 27;21(9):2127–2133. doi: 10.1021/bi00538a022. [DOI] [PubMed] [Google Scholar]
- Roux M., Bloom M. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry. 1990 Jul 31;29(30):7077–7089. doi: 10.1021/bi00482a019. [DOI] [PubMed] [Google Scholar]
- Roux M., Neumann J. M., Bloom M., Devaux P. F. 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur Biophys J. 1988;16(5):267–273. doi: 10.1007/BF00254062. [DOI] [PubMed] [Google Scholar]
- Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
- Rudel L. L., Parks J. S., Johnson F. L., Babiak J. Low density lipoproteins in atherosclerosis. J Lipid Res. 1986 May;27(5):465–474. [PubMed] [Google Scholar]
- Rädler J. O., Koltover I., Salditt T., Safinya C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997 Feb 7;275(5301):810–814. doi: 10.1126/science.275.5301.810. [DOI] [PubMed] [Google Scholar]
- Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
- Seelig A., Allegrini P. R., Seelig J. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim Biophys Acta. 1988 Apr 7;939(2):267–276. doi: 10.1016/0005-2736(88)90070-3. [DOI] [PubMed] [Google Scholar]
- Seelig A., Macdonald P. M. Binding of a neuropeptide, substance P, to neutral and negatively charged lipids. Biochemistry. 1989 Mar 21;28(6):2490–2496. doi: 10.1021/bi00432a021. [DOI] [PubMed] [Google Scholar]
- Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Lopez A., Radhakrishnamurthy B., Berenson G. S. Complexing of serum pre-beta and beta-lipoproteins and acid mucopolysaccharides. Atherosclerosis. 1970 Nov-Dec;12(3):321–334. doi: 10.1016/0021-9150(70)90036-5. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Studies on the interaction of heparin with serum lipoproteins in the presence of Ca2+, Mg2+, and Mn2+. Arch Biochem Biophys. 1975 Sep;170(1):334–340. doi: 10.1016/0003-9861(75)90125-3. [DOI] [PubMed] [Google Scholar]
- Steffan G., Wulff S., Galla H. J. Divalent cation-dependent interaction of sulfated polysaccharides with phosphatidylcholine and mixed phosphatidylcholine/phosphatidylglycerol liposomes. Chem Phys Lipids. 1994 Dec;74(2):141–150. doi: 10.1016/0009-3084(94)90055-8. [DOI] [PubMed] [Google Scholar]
- Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisgraber K. H., Rall S. C., Jr Human apolipoprotein B-100 heparin-binding sites. J Biol Chem. 1987 Aug 15;262(23):11097–11103. [PubMed] [Google Scholar]
- Whiteman P. The quantitative measurement of Alcian Blue-glycosaminoglycan complexes. Biochem J. 1973 Feb;131(2):343–350. doi: 10.1042/bj1310343. [DOI] [PMC free article] [PubMed] [Google Scholar]