Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):917–925. doi: 10.1016/S0006-3495(98)77580-0

Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers.

S Tristram-Nagle 1, H I Petrache 1, J F Nagle 1
PMCID: PMC1299765  PMID: 9675192

Abstract

This study focuses on dioleoylphosphatidylcholine (DOPC) bilayers near full hydration. Volumetric data and high-resolution synchrotron x-ray data are used in a method that compares DOPC with well determined gel phase dipalmitoylphosphatidylcholine (DPPC). The key structural quantity obtained is fully hydrated area/lipid A0 = 72.2 +/- 1.1 A2 at 30 degrees C, from which other quantities such as thickness of the bilayer are obtained. Data for samples over osmotic pressures from 0 to 56 atmospheres give an estimate for the area compressibility of KA = 188 dyn/cm. Obtaining the continuous scattering transform and electron density profiles requires correction for liquid crystal fluctuations. Quantitation of these fluctuations opens an experimental window on the fluctuation pressure, the primary repulsive interaction near full hydration. The fluctuation pressure decays exponentially with water spacing, in agreement with analytical results for soft confinement. However, the ratio of decay length lambda(fl) = 5.8 A to hydration pressure decay length lambda = 2.2 A is significantly larger than the value of 2 predicted by analytical theory and close to the ratio obtained in recent simulations. We also obtain the traditional osmotic pressure versus water spacing data. Our analysis of these data shows that estimates of the Hamaker parameter H and the bending modulus Kc are strongly coupled.

Full Text

The Full Text of this article is available as a PDF (111.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  2. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  3. Evans E. A., Parsegian V. A. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci. 1983;416:13–33. doi: 10.1111/j.1749-6632.1983.tb35176.x. [DOI] [PubMed] [Google Scholar]
  4. Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
  5. Gruner S. M., Tate M. W., Kirk G. L., So P. T., Turner D. C., Keane D. T., Tilcock C. P., Cullis P. R. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry. 1988 Apr 19;27(8):2853–2866. doi: 10.1021/bi00408a029. [DOI] [PubMed] [Google Scholar]
  6. Hristova K., White S. H. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration. Biophys J. 1998 May;74(5):2419–2433. doi: 10.1016/S0006-3495(98)77950-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kummrow M, Helfrich W. Deformation of giant lipid vesicles by electric fields. Phys Rev A. 1991 Dec 15;44(12):8356–8360. doi: 10.1103/physreva.44.8356. [DOI] [PubMed] [Google Scholar]
  9. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
  10. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  11. McIntosh T. J., Simon S. A. Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry. 1986 Aug 26;25(17):4948–4952. doi: 10.1021/bi00365a034. [DOI] [PubMed] [Google Scholar]
  12. McIntosh T. J., Simon S. A. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase. Biochemistry. 1993 Aug 17;32(32):8374–8384. doi: 10.1021/bi00083a042. [DOI] [PubMed] [Google Scholar]
  13. Nagle J. F., Wiener M. C. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Jul 7;942(1):1–10. doi: 10.1016/0005-2736(88)90268-4. [DOI] [PubMed] [Google Scholar]
  14. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Petrache H. I., Feller S. E., Nagle J. F. Determination of component volumes of lipid bilayers from simulations. Biophys J. 1997 May;72(5):2237–2242. doi: 10.1016/S0006-3495(97)78867-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sun W. J., Tristram-Nagle S., Suter R. M., Nagle J. F. Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys J. 1996 Aug;71(2):885–891. doi: 10.1016/S0006-3495(96)79290-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF. Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4665–4676. doi: 10.1103/physreve.49.4665. [DOI] [PubMed] [Google Scholar]
  19. Tristram-Nagle S., Zhang R., Suter R. M., Worthington C. R., Sun W. J., Nagle J. F. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys J. 1993 Apr;64(4):1097–1109. doi: 10.1016/S0006-3495(93)81475-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tu K., Tobias D. J., Klein M. L. Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophys J. 1995 Dec;69(6):2558–2562. doi: 10.1016/S0006-3495(95)80126-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ulrich A. S., Sami M., Watts A. Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta. 1994 Apr 20;1191(1):225–230. doi: 10.1016/0005-2736(94)90253-4. [DOI] [PubMed] [Google Scholar]
  22. White S. H., Jacobs R. E., King G. I. Partial specific volumes of lipid and water in mixtures of egg lecithin and water. Biophys J. 1987 Oct;52(4):663–665. doi: 10.1016/S0006-3495(87)83259-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wiener M. C., Suter R. M., Nagle J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989 Feb;55(2):315–325. doi: 10.1016/S0006-3495(89)82807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiener M. C., Tristram-Nagle S., Wilkinson D. A., Campbell L. E., Nagle J. F. Specific volumes of lipids in fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Feb 18;938(2):135–142. doi: 10.1016/0005-2736(88)90153-8. [DOI] [PubMed] [Google Scholar]
  25. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys J. 1992 Feb;61(2):428–433. doi: 10.1016/S0006-3495(92)81848-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Worthington C. R., King G. I., McIntosh T. J. Direct structure determination of multilayered membrane-type systems which contain fluid layers. Biophys J. 1973 May;13(5):480–494. doi: 10.1016/S0006-3495(73)86001-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang R., Tristram-Nagle S., Sun W., Headrick R. L., Irving T. C., Suter R. M., Nagle J. F. Small-angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J. 1996 Jan;70(1):349–357. doi: 10.1016/S0006-3495(96)79576-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Dec;50(6):5047–5060. doi: 10.1103/physreve.50.5047. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES