Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):990–998. doi: 10.1016/S0006-3495(98)77587-3

Trematode hemoglobins show exceptionally high oxygen affinity.

L Kiger 1, A K Rashid 1, N Griffon 1, M Haque 1, L Moens 1, Q H Gibson 1, C Poyart 1, M C Marden 1
PMCID: PMC1299772  PMID: 9675199

Abstract

Ligand binding studies were made with hemoglobin (Hb) isolated from trematode species Gastrothylax crumenifer (Gc), Paramphistomum epiclitum (Pe), Explanatum explanatum (Ee), parasitic worms of water buffalo Bubalus bubalis, and Isoparorchis hypselobagri (Ih) parasitic in the catfish Wallago attu. The kinetics of oxygen and carbon monoxide binding show very fast association rates. Whereas oxygen can be displaced on a millisecond time scale from human Hb at 25 degrees C, the dissociation of oxygen from trematode Hb may require a few seconds to over 20 s (for Hb Pe). Carbon monoxide dissociation is faster, however, than for other monomeric hemoglobins or myoglobins. Trematode hemoglobins also show a reduced rate of autoxidation; the oxy form is not readily oxidized by potassium ferricyanide, indicating that only the deoxy form reacts rapidly with this oxidizing agent. Unlike most vertebrate Hbs, the trematodes have a tyrosine residue at position E7 instead of the usual distal histidine. As for Hb Ascaris, which also displays a high oxygen affinity, the trematodes have a tyrosine in position B10; two H-bonds to the oxygen molecule are thought to be responsible for the very high oxygen affinity. The trematode hemoglobins display a combination of high association rates and very low dissociation rates, resulting in some of the highest oxygen affinities ever observed.

Full Text

The Full Text of this article is available as a PDF (132.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiconi G., Antonini E., Brunori M., Formaneck H., Huber R. Functional properties of native and reconstituted hemoglobins from Chironomus thummi thummi. Eur J Biochem. 1972 Nov 21;31(1):52–58. doi: 10.1111/j.1432-1033.1972.tb02499.x. [DOI] [PubMed] [Google Scholar]
  2. Appleby C. A., Bradbury J. H., Morris R. J., Wittenberg B. A., Wittenberg J. B., Wright P. E. Leghemoglobin. Kinetic, nuclear magnetic resonance, and optical studies of pH dependence of oxygen and carbon monoxide binding. J Biol Chem. 1983 Feb 25;258(4):2254–2259. [PubMed] [Google Scholar]
  3. Brantley R. E., Jr, Smerdon S. J., Wilkinson A. J., Singleton E. W., Olson J. S. The mechanism of autooxidation of myoglobin. J Biol Chem. 1993 Apr 5;268(10):6995–7010. [PubMed] [Google Scholar]
  4. Carver T. E., Brantley R. E., Jr, Singleton E. W., Arduini R. M., Quillin M. L., Phillips G. N., Jr, Olson J. S. A novel site-directed mutant of myoglobin with an unusually high O2 affinity and low autooxidation rate. J Biol Chem. 1992 Jul 15;267(20):14443–14450. [PubMed] [Google Scholar]
  5. Chang C. K., Traylor T. G. Kinetics of oxygen and carbon monoxide binding to synthetic analogs of the myoglobin and hemoglobin active sites. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1166–1170. doi: 10.1073/pnas.72.3.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conti E., Moser C., Rizzi M., Mattevi A., Lionetti C., Coda A., Ascenzi P., Brunori M., Bolognesi M. X-ray crystal structure of ferric Aplysia limacina myoglobin in different liganded states. J Mol Biol. 1993 Oct 5;233(3):498–508. doi: 10.1006/jmbi.1993.1527. [DOI] [PubMed] [Google Scholar]
  7. De Baere I., Perutz M. F., Kiger L., Marden M. C., Poyart C. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1594–1597. doi: 10.1073/pnas.91.4.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Iorio E. E., Meier U. T., Smit J. D., Winterhalter K. H. Kinetics of oxygen and carbon monoxide binding to liver fluke (Dicrocoelium dendriticum) hemoglobin. An extreme case? J Biol Chem. 1985 Feb 25;260(4):2160–2164. [PubMed] [Google Scholar]
  9. Egeberg K. D., Springer B. A., Sligar S. G., Carver T. E., Rohlfs R. J., Olson J. S. The role of Val68(E11) in ligand binding to sperm whale myoglobin. Site-directed mutagenesis of a synthetic gene. J Biol Chem. 1990 Jul 15;265(20):11788–11795. [PubMed] [Google Scholar]
  10. Gibson Q. H., Regan R., Olson J. S., Carver T. E., Dixon B., Pohajdak B., Sharma P. K., Vinogradov S. N. Kinetics of ligand binding to Pseudoterranova decipiens and Ascaris suum hemoglobins and to Leu-29-->Tyr sperm whale myoglobin mutant. J Biol Chem. 1993 Aug 15;268(23):16993–16998. [PubMed] [Google Scholar]
  11. Gibson Q. H., Smith M. H. Rates of reaction of Ascaris haemoglobins with ligands. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):206–214. doi: 10.1098/rspb.1965.0067. [DOI] [PubMed] [Google Scholar]
  12. Gibson Q. H., Wittenberg J. B., Wittenberg B. A., Bogusz D., Appleby C. A. The kinetics of ligand binding to plant hemoglobins. Structural implications. J Biol Chem. 1989 Jan 5;264(1):100–107. [PubMed] [Google Scholar]
  13. Haider S. A., Siddiqi A. H. Spectrophotometric analysis of haemoglobins of some digenetic trematodes and their hosts. J Helminthol. 1976 Dec;50(4):259–265. doi: 10.1017/s0022149x00026687. [DOI] [PubMed] [Google Scholar]
  14. Haque M., Rashid K. A., Stern M. S., Sharma P. K., Siddiqi A. H., Vinogradov S. N., Walz D. A. Comparison of the hemoglobins of the platyhelminths Gastrothylax crumenifer and Paramphistomum epiclitum (Trematoda: Paramphistomatidae). Comp Biochem Physiol B. 1992 Apr;101(4):673–676. doi: 10.1016/0305-0491(92)90357-w. [DOI] [PubMed] [Google Scholar]
  15. Huang S., Huang J., Kloek A. P., Goldberg D. E., Friedman J. M. Hydrogen bonding of tyrosine B10 to heme-bound oxygen in Ascaris hemoglobin. Direct evidence from UV resonance Raman spectroscopy. J Biol Chem. 1996 Jan 12;271(2):958–962. doi: 10.1074/jbc.271.2.958. [DOI] [PubMed] [Google Scholar]
  16. Kraus D. W., Wittenberg J. B., Lu J. F., Peisach J. Hemoglobins of the Lucina pectinata/bacteria symbiosis. II. An electron paramagnetic resonance and optical spectral study of the ferric proteins. J Biol Chem. 1990 Sep 25;265(27):16054–16059. [PubMed] [Google Scholar]
  17. Lecomte J. T., Smit J. D., Winterhalter K. H., La Mar G. N. Structural and electronic properties of the liver fluke heme cavity by nuclear magnetic resonance and optical spectroscopy. Evidence for a distal tyrosine residue in a normally functioning hemoglobin. J Mol Biol. 1989 Sep 20;209(2):235–247. doi: 10.1016/0022-2836(89)90275-1. [DOI] [PubMed] [Google Scholar]
  18. Marden M. C., Hazard E. S., 3rd, Gibson Q. H. Protoheme-carbon monoxide geminate kinetics. Biochemistry. 1986 May 20;25(10):2786–2792. doi: 10.1021/bi00358a008. [DOI] [PubMed] [Google Scholar]
  19. Mims M. P., Porras A. G., Olson J. S., Noble R. W., Peterson J. A. Ligand binding to heme proteins. An evaluation of distal effects. J Biol Chem. 1983 Dec 10;258(23):14219–14232. [PubMed] [Google Scholar]
  20. Parkhurst L. J., Sima P., Goss D. J. Kinetics of oxygen and carbon monoxide binding to the hemoglobins of Glycera dibranchiata. Biochemistry. 1980 Jun 10;19(12):2688–2692. doi: 10.1021/bi00553a023. [DOI] [PubMed] [Google Scholar]
  21. Peterson E. S., Huang S., Wang J., Miller L. M., Vidugiris G., Kloek A. P., Goldberg D. E., Chance M. R., Wittenberg J. B., Friedman J. M. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata). Biochemistry. 1997 Oct 21;36(42):13110–13121. doi: 10.1021/bi971156n. [DOI] [PubMed] [Google Scholar]
  22. Poyart C., Wajcman H., Kister J. Molecular adaptation of hemoglobin function in mammals. Respir Physiol. 1992 Oct;90(1):3–17. doi: 10.1016/0034-5687(92)90130-o. [DOI] [PubMed] [Google Scholar]
  23. Quillin M. L., Arduini R. M., Olson J. S., Phillips G. N., Jr High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J Mol Biol. 1993 Nov 5;234(1):140–155. doi: 10.1006/jmbi.1993.1569. [DOI] [PubMed] [Google Scholar]
  24. Rashid A. K., Van Hauwaert M. L., Haque M., Siddiqi A. H., Lasters I., De Maeyer M., Griffon N., Marden M. C., Dewilde S., Clauwaert J. Trematode myoglobins, functional molecules with a distal tyrosine. J Biol Chem. 1997 Jan 31;272(5):2992–2999. doi: 10.1074/jbc.272.5.2992. [DOI] [PubMed] [Google Scholar]
  25. Rashid K. A., Haque M., Siddiqi A. H., Stern M. S., Sharma P. K., Vinogradov S. N., Walz D. A. Purification and properties of the hemoglobins of the platyhelminth Isoparorchis hypselobagri (Trematoda: Isoparorchidae) and its host Wallagu attu (catfish). Comp Biochem Physiol B. 1993 Dec;106(4):993–998. doi: 10.1016/0305-0491(93)90063-b. [DOI] [PubMed] [Google Scholar]
  26. Rohlfs R. J., Mathews A. J., Carver T. E., Olson J. S., Springer B. A., Egeberg K. D., Sligar S. G. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Biol Chem. 1990 Feb 25;265(6):3168–3176. [PubMed] [Google Scholar]
  27. Shibayama N., Yonetani T., Regan R. M., Gibson Q. H. Mechanism of ligand binding to Ni(II)-Fe(II) hybrid hemoglobins. Biochemistry. 1995 Nov 14;34(45):14658–14667. doi: 10.1021/bi00045a006. [DOI] [PubMed] [Google Scholar]
  28. Sick H., Gersonde K. Continuous gas-depletion technique for measuring O2-dissociation curves of high-affinity hemoglobins. Anal Biochem. 1985 Apr;146(1):277–280. doi: 10.1016/0003-2697(85)90427-0. [DOI] [PubMed] [Google Scholar]
  29. Springer B. A., Egeberg K. D., Sligar S. G., Rohlfs R. J., Mathews A. J., Olson J. S. Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. J Biol Chem. 1989 Feb 25;264(6):3057–3060. [PubMed] [Google Scholar]
  30. Tian W. D., Sage J. T., Champion P. M. Investigations of ligand association and dissociation rates in the "open" and "closed" states of myoglobin. J Mol Biol. 1993 Sep 5;233(1):155–166. doi: 10.1006/jmbi.1993.1491. [DOI] [PubMed] [Google Scholar]
  31. Traylor T. G., Berzinis A. P. Binding of O2 and CO to hemes and hemoproteins. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3171–3175. doi: 10.1073/pnas.77.6.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wittenberg B. A., Brunori M., Antonini E., Wittenberg J. B., Wyman J. Kinetics of the reactions of Aplysia myoglobin with oxygen and carbon monoxide. Arch Biochem Biophys. 1965 Sep;111(3):576–579. doi: 10.1016/0003-9861(65)90237-7. [DOI] [PubMed] [Google Scholar]
  33. Wittenberg J. B., Appleby C. A., Wittenberg B. A. The kinetics of the reactions of leghemoglobin with oxygen and carbon monoxide. J Biol Chem. 1972 Jan 25;247(2):527–531. [PubMed] [Google Scholar]
  34. Wittenberg J. B., Wittenberg B. A., Gibson Q. H., Trinick M. J., Appleby C. A. The kinetics of the reactions of Parasponia andersonii hemoglobin with oxygen, carbon monoxide, and nitric oxide. J Biol Chem. 1986 Oct 15;261(29):13624–13631. [PubMed] [Google Scholar]
  35. Yang F., Phillips G. N., Jr Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol. 1996 Mar 8;256(4):762–774. doi: 10.1006/jmbi.1996.0123. [DOI] [PubMed] [Google Scholar]
  36. Yang J., Kloek A. P., Goldberg D. E., Mathews F. S. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: molecular features of oxygen avidity. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4224–4228. doi: 10.1073/pnas.92.10.4224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang W., Rashid K. A., Haque M., Siddiqi A. H., Vinogradov S. N., Moens L., Mar G. N. Solution of 1H NMR structure of the heme cavity in the oxygen-avid myoglobin from the trematode Paramphistomum epiclitum. J Biol Chem. 1997 Jan 31;272(5):3000–3006. doi: 10.1074/jbc.272.5.3000. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES