Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1040–1051. doi: 10.1016/S0006-3495(98)77593-9

Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation.

P Harvie 1, F M Wong 1, M B Bally 1
PMCID: PMC1299778  PMID: 9675205

Abstract

We have recently described a method for preparing lipid-based DNA particles (LDPs) that form spontaneously when detergent-solubilized cationic lipids are mixed with DNA. LDPs have the potential to be developed as carriers for use in gene therapy. More importantly, the lipid-DNA interactions that give rise to particle formation can be studied to gain a better understanding of factors that govern lipid binding and lipid dissociation. In this study the stability of lipid-DNA interactions was evaluated by measurement of DNA protection (binding of the DNA intercalating dye TO-PRO-1 and sensitivity to DNase I) and membrane destabilization (lipid mixing reactions measured by fluorescence resonance energy transfer techniques) after the addition of anionic liposomes. Lipid-based DNA transfer systems were prepared with pInexCAT v.2.0, a 4.49-kb plasmid expression vector that contains the marker gene for chloramphenicol acetyltransferase (CAT). LDPs were prepared using N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC) and either 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). For comparison, liposome/DNA aggregates (LDAs) were also prepared by using preformed DODAC/DOPE (1:1 mole ratio) and DODAC/DOPC (1:1 mole ratio) liposomes. The addition of anionic liposomes to the lipid-based DNA formulations initiated rapid membrane destabilization as measured by the resonance energy transfer lipid-mixing assay. It is suggested that lipid mixing is a reflection of processes (contact, dehydration, packing defects) that lead to formulation disassembly and DNA release. This destabilization reaction was associated with an increase in DNA sensitivity to DNase I, and anionic membrane-mediated destabilization was not dependent on the incorporation of DOPE. These results are interpreted in terms of factors that regulate the disassembly of lipid-based DNA formulations.

Full Text

The Full Text of this article is available as a PDF (246.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A. L., Cullis P. R. Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry. 1997 Feb 18;36(7):1628–1634. doi: 10.1021/bi961173x. [DOI] [PubMed] [Google Scholar]
  2. Chowdhury N. R., Wu C. H., Wu G. Y., Yerneni P. C., Bommineni V. R., Chowdhury J. R. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. Prolonged persistence in cytoplasmic vesicles after partial hepatectomy. J Biol Chem. 1993 May 25;268(15):11265–11271. [PubMed] [Google Scholar]
  3. Cristiano R. J., Curiel D. T. Strategies to accomplish gene delivery via the receptor-mediated endocytosis pathway. Cancer Gene Ther. 1996 Jan-Feb;3(1):49–57. [PubMed] [Google Scholar]
  4. Crook K., McLachlan G., Stevenson B. J., Porteous D. J. Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolisation. Gene Ther. 1996 Sep;3(9):834–839. [PubMed] [Google Scholar]
  5. Damodaran K. V., Merz K. M., Jr A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J. 1994 Apr;66(4):1076–1087. doi: 10.1016/S0006-3495(94)80889-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farhood H., Serbina N., Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995 May 4;1235(2):289–295. doi: 10.1016/0005-2736(95)80016-9. [DOI] [PubMed] [Google Scholar]
  7. Fasbender A., Marshall J., Moninger T. O., Grunst T., Cheng S., Welsh M. J. Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. 1997 Jul;4(7):716–725. doi: 10.1038/sj.gt.3300459. [DOI] [PubMed] [Google Scholar]
  8. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felgner P. L., Ringold G. M. Cationic liposome-mediated transfection. Nature. 1989 Jan 26;337(6205):387–388. doi: 10.1038/337387a0. [DOI] [PubMed] [Google Scholar]
  10. Hirons G. T., Fawcett J. J., Crissman H. A. TOTO and YOYO: new very bright fluorochromes for DNA content analyses by flow cytometry. Cytometry. 1994 Feb 1;15(2):129–140. doi: 10.1002/cyto.990150206. [DOI] [PubMed] [Google Scholar]
  11. Holland J. W., Hui C., Cullis P. R., Madden T. D. Poly(ethylene glycol)--lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry. 1996 Feb 27;35(8):2618–2624. doi: 10.1021/bi952000v. [DOI] [PubMed] [Google Scholar]
  12. Hui S. W., Langner M., Zhao Y. L., Ross P., Hurley E., Chan K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys J. 1996 Aug;71(2):590–599. doi: 10.1016/S0006-3495(96)79309-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu Y., Mounkes L. C., Liggitt H. D., Brown C. S., Solodin I., Heath T. D., Debs R. J. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol. 1997 Feb;15(2):167–173. doi: 10.1038/nbt0297-167. [DOI] [PubMed] [Google Scholar]
  14. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  15. McIntosh T. J. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids. 1996 Jul 15;81(2):117–131. doi: 10.1016/0009-3084(96)02577-7. [DOI] [PubMed] [Google Scholar]
  16. Meyer K. B., Thompson M. M., Levy M. Y., Barron L. G., Szoka F. C., Jr Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics. Gene Ther. 1995 Sep;2(7):450–460. [PubMed] [Google Scholar]
  17. Mok K. W., Cullis P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997 Nov;73(5):2534–2545. doi: 10.1016/S0006-3495(97)78282-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reimer D. L., Kong S., Bally M. B. Analysis of cationic liposome-mediated interactions of plasmid DNA with murine and human melanoma cells in vitro. J Biol Chem. 1997 Aug 1;272(31):19480–19487. doi: 10.1074/jbc.272.31.19480. [DOI] [PubMed] [Google Scholar]
  19. Reimer D. L., Zhang Y., Kong S., Wheeler J. J., Graham R. W., Bally M. B. Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry. 1995 Oct 3;34(39):12877–12883. doi: 10.1021/bi00039a050. [DOI] [PubMed] [Google Scholar]
  20. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  21. Slater S. J., Ho C., Taddeo F. J., Kelly M. B., Stubbs C. D. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry. 1993 Apr 13;32(14):3714–3721. doi: 10.1021/bi00065a025. [DOI] [PubMed] [Google Scholar]
  22. Stegmann T., Legendre J. Y. Gene transfer mediated by cationic lipids: lack of a correlation between lipid mixing and transfection. Biochim Biophys Acta. 1997 Apr 3;1325(1):71–79. doi: 10.1016/s0005-2736(96)00241-6. [DOI] [PubMed] [Google Scholar]
  23. Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
  24. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  25. Templeton N. S., Lasic D. D., Frederik P. M., Strey H. H., Roberts D. D., Pavlakis G. N. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997 Jul;15(7):647–652. doi: 10.1038/nbt0797-647. [DOI] [PubMed] [Google Scholar]
  26. Wagner E., Plank C., Zatloukal K., Cotten M., Birnstiel M. L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7934–7938. doi: 10.1073/pnas.89.17.7934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wong F. M., Reimer D. L., Bally M. B. Cationic lipid binding to DNA: characterization of complex formation. Biochemistry. 1996 May 7;35(18):5756–5763. doi: 10.1021/bi952847r. [DOI] [PubMed] [Google Scholar]
  28. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  29. Zelphati O., Szoka F. C., Jr Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11493–11498. doi: 10.1073/pnas.93.21.11493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang Y. P., Reimer D. L., Zhang G., Lee P. H., Bally M. B. Self-assembling DNA-lipid particles for gene transfer. Pharm Res. 1997 Feb;14(2):190–196. doi: 10.1023/a:1012000711033. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES