Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1052–1057. doi: 10.1016/S0006-3495(98)77594-0

Is there a specific receptor for anesthetics? Contrary effects of alcohols and fatty acids on phase transition and bioluminescence of firefly luciferase.

I Ueda 1, A Suzuki 1
PMCID: PMC1299779  PMID: 9675206

Abstract

Firefly luciferase emits a burst of light when mixed with ATP and luciferin (L) in the presence of oxygen. This study compared the effects of long-chain n-alcohols (1-decanol to 1-octadecanol) and fatty acids (decanoic to octadecanoic acids) on firefly luciferase. Fatty acids were stronger inhibitors of firefly luciferase than n-alcohols. Myristyl alcohol inhibited the light intensity by 50% (IC50) at 13.6 microM, whereas the IC50 of myristic acid was 0.68 microM. According to the Meyer-Overton rule, fatty acids are approximately 12,000-fold stronger inhibitors than corresponding alcohols. The Lineweaver-Burk plot showed that myristic acid inhibited firefly luciferase in competition with luciferin, whereas myristyl alcohol inhibited it noncompetitively. The differential scanning calorimetry (DSC) showed that an irreversible thermal transition occurred at approximately 39 degrees C with a transition DeltaHcal of 1.57 cal g-1. The ligand effects on the transition were evaluated by the temperature where the irreversible change is half completed. Alcohols decreased whereas fatty acids increased the thermal transition temperature of firefly luciferase. Koshland's transition-state theory (Science. 1963. 142:1533-1541) states that ligands that bind to the substrate-recognition sites induce the enzyme at a transition state, which is more stabilized than the native state against thermal perturbation. The long-chain fatty acids bound to the luciferin recognition site and stabilized the protein conformation at the transition state, which resisted thermal denaturation. Eyring's unfolding theory (Science. 1966. 154:1609-1613) postulates that anesthetics and alcohols bind nonspecifically to interfacial areas of proteins and reversibly unfold the conformation. The present results showed that alcohols do not compete with luciferin and inhibit firefly luciferase nonspecifically by unfolding the protein. Fatty acids are receptor binders and stabilize the protein conformation at the transition state.

Full Text

The Full Text of this article is available as a PDF (84.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alifimoff J. K., Firestone L. L., Miller K. W. Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol. 1989 Jan;96(1):9–16. doi: 10.1111/j.1476-5381.1989.tb11777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babbitt P. C., Kenyon G. L., Martin B. M., Charest H., Slyvestre M., Scholten J. D., Chang K. H., Liang P. H., Dunaway-Mariano D. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry. 1992 Jun 23;31(24):5594–5604. doi: 10.1021/bi00139a024. [DOI] [PubMed] [Google Scholar]
  3. Catanzano F., Gambuti A., Graziano G., Barone G. Interaction with D-glucose and thermal denaturation of yeast hexokinase B: A DSC study. J Biochem. 1997 Mar;121(3):568–577. doi: 10.1093/oxfordjournals.jbchem.a021623. [DOI] [PubMed] [Google Scholar]
  4. Chiou J. S., Ueda I. Ethanol unfolds firefly luciferase while competitive inhibitors antagonize unfolding: DSC and FTIR analyses. J Pharm Biomed Anal. 1994 Aug;12(8):969–975. doi: 10.1016/0731-7085(94)00045-x. [DOI] [PubMed] [Google Scholar]
  5. DeLuca M. Hydrophobic nature of the active site of firefly luciferase. Biochemistry. 1969 Jan;8(1):160–166. doi: 10.1021/bi00829a023. [DOI] [PubMed] [Google Scholar]
  6. DeLuca M., Marsh M. Conformational changes of luciferase during catalyses. Tritium-hydrogen exchange and optical rotation studies. Arch Biochem Biophys. 1967 Jul;121(1):233–240. doi: 10.1016/0003-9861(67)90029-x. [DOI] [PubMed] [Google Scholar]
  7. DeLuca M., McElroy W. D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry. 1974 Feb 26;13(5):921–925. doi: 10.1021/bi00702a015. [DOI] [PubMed] [Google Scholar]
  8. Dickinson R., Franks N. P., Lieb W. R. Thermodynamics of anesthetic/protein interactions. Temperature studies on firefly luciferase. Biophys J. 1993 Apr;64(4):1264–1271. doi: 10.1016/S0006-3495(93)81491-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eyring H. Untangling biological reactions. Science. 1966 Dec 30;154(3757):1609–1613. doi: 10.1126/science.154.3757.1609. [DOI] [PubMed] [Google Scholar]
  10. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  11. Hansch C., Clayton J. M. Lipophilic character and biological activity of drugs. II. The parabolic case. J Pharm Sci. 1973 Jan;62(1):1–21. doi: 10.1002/jps.2600620102. [DOI] [PubMed] [Google Scholar]
  12. Hernández-Arana A., Rojo-Domínguez A., Altamirano M. M., Calcagno M. L. Differential scanning calorimetry of the irreversible denaturation of Escherichia coli glucosamine-6-phosphate deaminase. Biochemistry. 1993 Apr 13;32(14):3644–3648. doi: 10.1021/bi00065a017. [DOI] [PubMed] [Google Scholar]
  13. KOSHLAND D. E., Jr CORRELATION OF STRUCTURE AND FUNCTION IN ENZYME ACTION. Science. 1963 Dec 20;142(3599):1533–1541. doi: 10.1126/science.142.3599.1533. [DOI] [PubMed] [Google Scholar]
  14. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lepock J. R., Ritchie K. P., Kolios M. C., Rodahl A. M., Heinz K. A., Kruuv J. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992 Dec 22;31(50):12706–12712. doi: 10.1021/bi00165a023. [DOI] [PubMed] [Google Scholar]
  16. Shnyrov V. L., Marcos M. J., Villar E. Kinetic study on the irreversible thermal denaturation of lentil lectin. Biochem Mol Biol Int. 1996 Jul;39(4):647–656. doi: 10.1080/15216549600201711. [DOI] [PubMed] [Google Scholar]
  17. Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., Hashimoto T., Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed] [Google Scholar]
  18. Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
  19. Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
  20. UEDA I. EFFECTS OF DIETHYL ETHER AND HALOTHANE ON FIREFLY LUCIFERIN BIOLUMINESCENCE. Anesthesiology. 1965 Sep-Oct;26:603–606. doi: 10.1097/00000542-196509000-00003. [DOI] [PubMed] [Google Scholar]
  21. Ueda I., Kamaya H. Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology. 1973 May;38(5):425–436. doi: 10.1097/00000542-197305000-00002. [DOI] [PubMed] [Google Scholar]
  22. Ueda I., Shinoda F., Kamaya H. Temperature-dependent effects of high pressure on the bioluminescence of firefly luciferase. Biophys J. 1994 Jun;66(6):2107–2110. doi: 10.1016/S0006-3495(94)81005-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ueda I., Suzuki A. Irreversible phase transition of firefly luciferase: contrasting effects of volatile anesthetics and myristic acid. Biochim Biophys Acta. 1998 May 8;1380(3):313–319. doi: 10.1016/s0304-4165(97)00159-1. [DOI] [PubMed] [Google Scholar]
  24. Ueda I., Yamanaka M. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency. Biophys J. 1997 Apr;72(4):1812–1817. doi: 10.1016/S0006-3495(97)78827-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ulitzur S., Hastings J. W. Myristic acid stimulation of bacterial bioluminescence in "aldehyde" mutants. Proc Natl Acad Sci U S A. 1978 Jan;75(1):266–269. doi: 10.1073/pnas.75.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ye L., Buck L. M., Schaeffer H. J., Leach F. R. Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvanica. Biochim Biophys Acta. 1997 Apr 25;1339(1):39–52. doi: 10.1016/s0167-4838(96)00211-7. [DOI] [PubMed] [Google Scholar]
  27. Yoshida T., Tanaka M., Mori Y., Ueda I. Negative entropy of halothane binding to protein: 19F-NMR with a novel cell. Biochim Biophys Acta. 1997 Mar 15;1334(2-3):117–122. doi: 10.1016/s0304-4165(97)00014-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES