Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1058–1061. doi: 10.1016/S0006-3495(98)77595-2

Interpreting the equatorial diffraction pattern of collagenous tissues in the light of molecular motion.

S Lees 1
PMCID: PMC1299780  PMID: 9675207

Abstract

The equatorial diffraction pattern associated with collagenous tissues, particularly type I collagen, is diffuse and clearly unlike that from crystals. Hukins and Woodhead-Galloway proposed a statistical model that they termed a "liquid crystal" for collagen fibers in tendons. Fratzl et al. applied this model to both unmineralized and mineralized turkey leg tendon, a model that ignores the organization imposed by the well-known cross-linking. The justification for adopting this model is that the curve fits the data. It is shown that the data can be equally well matched by fitting a least-squares curve consisting of a second-order polynomial plus a Gaussian. The peak of the Gaussian is taken as the equatorial spacing of the collagen. A physical explanation for this model is given, as is a reason for the changes in the spacing with changes in water content of the tissue. The diffusion is attributed to thermally driven agitation of the molecules, in accordance with the Debye-Waller theory including the Gaussian distribution. The remainder of the diffusion is attributed to other scattering sources like the mineral crystallites.

Full Text

The Full Text of this article is available as a PDF (50.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batchelder L. S., Sullivan C. E., Jelinski L. W., Torchia D. A. Characterization of leucine side-chain reorientation in collagen-fibrils by solid-state 2H NMR. Proc Natl Acad Sci U S A. 1982 Jan;79(2):386–389. doi: 10.1073/pnas.79.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonar L. C., Lees S., Mook H. A. Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol. 1985 Jan 20;181(2):265–270. doi: 10.1016/0022-2836(85)90090-7. [DOI] [PubMed] [Google Scholar]
  3. Cusack S., Lees S. Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers. Biopolymers. 1984 Feb;23(2):337–351. doi: 10.1002/bip.360230212. [DOI] [PubMed] [Google Scholar]
  4. Eyre D. R., Paz M. A., Gallop P. M. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–748. doi: 10.1146/annurev.bi.53.070184.003441. [DOI] [PubMed] [Google Scholar]
  5. Fratzl P., Fratzl-Zelman N., Klaushofer K. Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. Biophys J. 1993 Jan;64(1):260–266. doi: 10.1016/S0006-3495(93)81362-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jelinski L. W., Sullivan C. E., Torchia D. A. 2H NMR study of molecular motion in collagen fibrils. Nature. 1980 Apr 10;284(5756):531–534. doi: 10.1038/284531a0. [DOI] [PubMed] [Google Scholar]
  7. Landis W. J., Song M. J. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging. J Struct Biol. 1991 Oct;107(2):116–127. doi: 10.1016/1047-8477(91)90015-o. [DOI] [PubMed] [Google Scholar]
  8. Lee D. D., Glimcher M. J. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone. J Mol Biol. 1991 Feb 5;217(3):487–501. doi: 10.1016/0022-2836(91)90752-r. [DOI] [PubMed] [Google Scholar]
  9. Lees S. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res. 1987;16(4):281–303. doi: 10.3109/03008208709005616. [DOI] [PubMed] [Google Scholar]
  10. Lees S., Mook H. A. Equatorial diffraction spacing as a function of water content in fully mineralized cow bone determined by neutron diffraction. Calcif Tissue Int. 1986 Oct;39(4):291–292. doi: 10.1007/BF02555221. [DOI] [PubMed] [Google Scholar]
  11. Lees S., Page E. A. A study of some properties of mineralized turkey leg tendon. Connect Tissue Res. 1992;28(4):263–287. doi: 10.3109/03008209209016820. [DOI] [PubMed] [Google Scholar]
  12. Lees S., Prostak K. S., Ingle V. K., Kjoller K. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int. 1994 Sep;55(3):180–189. doi: 10.1007/BF00425873. [DOI] [PubMed] [Google Scholar]
  13. Lees S., Tao N. J., Lindsay S. M. Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connect Tissue Res. 1990;24(3-4):187–205. doi: 10.3109/03008209009152148. [DOI] [PubMed] [Google Scholar]
  14. Prostak K. S., Lees S. Visualization of crystal-matrix structure. In situ demineralization of mineralized turkey leg tendon and bone. Calcif Tissue Int. 1996 Dec;59(6):474–479. doi: 10.1007/BF00369213. [DOI] [PubMed] [Google Scholar]
  15. Sarkar S. K., Sullivan C. E., Torchia D. A. Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 nuclear magnetic resonance relaxation study. Biochemistry. 1985 Apr 23;24(9):2348–2354. doi: 10.1021/bi00330a033. [DOI] [PubMed] [Google Scholar]
  16. Sarkar S. K., Sullivan C. E., Torchia D. A. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J Biol Chem. 1983 Aug 25;258(16):9762–9767. [PubMed] [Google Scholar]
  17. Tanzer M. L. Cross-linking of collagen. Science. 1973 May 11;180(4086):561–566. doi: 10.1126/science.180.4086.561. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES