Abstract
Optical recording of transmembrane voltage changes with the use of potentiometric dyes has opened the possibility of determining spatial patterns of electrical activity in excitable tissues. To follow such activation patterns on the cellular/subcellular level in heart cell cultures, a recording system was developed that features both high spatial resolution (4-200 microm) and high temporal resolution (uncertainty in the determination of delays between fast rising signals of +/-1 micros). Central to the system is a fiber optic image conduit consisting of 379 individual optical fibers. At one end the fibers are fused to form an input window that matches the size of the field of view of the microscope. At the other end, the fibers are loose, permitting a selectable subset to be connected to 80 discrete photodetectors. This design allows the sensitive area of the imager to be adapted to regions of interest in a given preparation, thus making optimal use of the limited number of detectors. Furthermore, by using a second fiber optic imager, individual photodetectors can be assigned to different optical ports, thus providing the means for fast and simultaneous dual-emission wavelength measurements. This feature permitted the elimination of motion artifacts arising from the myocytes without the use of contraction-suppressing drugs.
Full Text
The Full Text of this article is available as a PDF (751.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chapman R. A. The effect of oximes on the dihydropyridine-sensitive Ca current of isolated guinea-pig ventricular myocytes. Pflugers Arch. 1993 Jan;422(4):325–331. doi: 10.1007/BF00374287. [DOI] [PubMed] [Google Scholar]
- Chien C. B., Pine J. An apparatus for recording synaptic potentials from neuronal cultures using voltage-sensitive fluorescent dyes. J Neurosci Methods. 1991 Jul;38(2-3):93–105. doi: 10.1016/0165-0270(91)90159-w. [DOI] [PubMed] [Google Scholar]
- Coulombe A., Lefevre I. A., Deroubaix E., Thuringer D., Coraboeuf E. Effect of 2,3-butanedione 2-monoxime on slow inward and transient outward currents in rat ventricular myocytes. J Mol Cell Cardiol. 1990 Aug;22(8):921–932. doi: 10.1016/0022-2828(90)90123-j. [DOI] [PubMed] [Google Scholar]
- Cranefield P. F., Wit A. L., Hoffman B. F. Genesis of cardiac arrhythmias. Circulation. 1973 Jan;47(1):190–204. doi: 10.1161/01.cir.47.1.190. [DOI] [PubMed] [Google Scholar]
- Dillon S. M. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res. 1991 Sep;69(3):842–856. doi: 10.1161/01.res.69.3.842. [DOI] [PubMed] [Google Scholar]
- Efimov I. R., Huang D. T., Rendt J. M., Salama G. Optical mapping of repolarization and refractoriness from intact hearts. Circulation. 1994 Sep;90(3):1469–1480. doi: 10.1161/01.cir.90.3.1469. [DOI] [PubMed] [Google Scholar]
- Falk C. X., Wu J. Y., Cohen L. B., Tang A. C. Nonuniform expression of habituation in the activity of distinct classes of neurons in the Aplysia abdominal ganglion. J Neurosci. 1993 Sep;13(9):4072–4081. doi: 10.1523/JNEUROSCI.13-09-04072.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fast V. G., Kléber A. G. Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ Res. 1993 Nov;73(5):914–925. doi: 10.1161/01.res.73.5.914. [DOI] [PubMed] [Google Scholar]
- Fromherz P., Lambacher A. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane. Biochim Biophys Acta. 1991 Sep 30;1068(2):149–156. doi: 10.1016/0005-2736(91)90203-k. [DOI] [PubMed] [Google Scholar]
- Girouard S. D., Laurita K. R., Rosenbaum D. S. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J Cardiovasc Electrophysiol. 1996 Nov;7(11):1024–1038. doi: 10.1111/j.1540-8167.1996.tb00478.x. [DOI] [PubMed] [Google Scholar]
- Gray R. A., Jalife J., Panfilov A., Baxter W. T., Cabo C., Davidenko J. M., Pertsov A. M. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation. 1995 May 1;91(9):2454–2469. doi: 10.1161/01.cir.91.9.2454. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Frostig R. D., Lieke E., Hildesheim R. Optical imaging of neuronal activity. Physiol Rev. 1988 Oct;68(4):1285–1366. doi: 10.1152/physrev.1988.68.4.1285. [DOI] [PubMed] [Google Scholar]
- Hirota A., Sato K., Momose-Sato Y., Sakai T., Kamino K. A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. J Neurosci Methods. 1995 Feb;56(2):187–194. doi: 10.1016/0165-0270(94)00123-x. [DOI] [PubMed] [Google Scholar]
- Iijima T., Witter M. P., Ichikawa M., Tominaga T., Kajiwara R., Matsumoto G. Entorhinal-hippocampal interactions revealed by real-time imaging. Science. 1996 May 24;272(5265):1176–1179. doi: 10.1126/science.272.5265.1176. [DOI] [PubMed] [Google Scholar]
- Kamino K. Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev. 1991 Jan;71(1):53–91. doi: 10.1152/physrev.1991.71.1.53. [DOI] [PubMed] [Google Scholar]
- Kanai A., Salama G. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circ Res. 1995 Oct;77(4):784–802. doi: 10.1161/01.res.77.4.784. [DOI] [PubMed] [Google Scholar]
- Kwaku K. F., Dillon S. M. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res. 1996 Nov;79(5):957–973. doi: 10.1161/01.res.79.5.957. [DOI] [PubMed] [Google Scholar]
- Neunlist M., Zou S. Z., Tung L. Design and use of an "optrode" for optical recordings of cardiac action potentials. Pflugers Arch. 1992 Apr;420(5-6):611–617. doi: 10.1007/BF00374641. [DOI] [PubMed] [Google Scholar]
- Pertsov A. M., Davidenko J. M., Salomonsz R., Baxter W. T., Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res. 1993 Mar;72(3):631–650. doi: 10.1161/01.res.72.3.631. [DOI] [PubMed] [Google Scholar]
- Ratzlaff E. H., Grinvald A. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods. 1991 Feb;36(2-3):127–137. doi: 10.1016/0165-0270(91)90038-2. [DOI] [PubMed] [Google Scholar]
- Rohr S. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage. J Cardiovasc Electrophysiol. 1995 Jul;6(7):551–568. doi: 10.1111/j.1540-8167.1995.tb00428.x. [DOI] [PubMed] [Google Scholar]
- Rohr S., Kucera J. P. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys J. 1997 Feb;72(2 Pt 1):754–766. doi: 10.1016/s0006-3495(97)78710-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohr S., Salzberg B. M. Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures. J Gen Physiol. 1994 Aug;104(2):287–309. doi: 10.1085/jgp.104.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohr S., Salzberg B. M. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys J. 1994 Sep;67(3):1301–1315. doi: 10.1016/S0006-3495(94)80602-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohr S., Schölly D. M., Kléber A. G. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization. Circ Res. 1991 Jan;68(1):114–130. doi: 10.1161/01.res.68.1.114. [DOI] [PubMed] [Google Scholar]
- Rosenbaum D. S., Kaplan D. T., Kanai A., Jackson L., Garan H., Cohen R. J., Salama G. Repolarization inhomogeneities in ventricular myocardium change dynamically with abrupt cycle length shortening. Circulation. 1991 Sep;84(3):1333–1345. doi: 10.1161/01.cir.84.3.1333. [DOI] [PubMed] [Google Scholar]
- Witkowski F. X., Plonsey R., Penkoske P. A., Kavanagh K. M. Significance of inwardly directed transmembrane current in determination of local myocardial electrical activation during ventricular fibrillation. Circ Res. 1994 Mar;74(3):507–524. doi: 10.1161/01.res.74.3.507. [DOI] [PubMed] [Google Scholar]