Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1084–1096. doi: 10.1016/S0006-3495(98)77598-8

Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.

K Flora 1, J D Brennan 1, G A Baker 1, M A Doody 1, F V Bright 1
PMCID: PMC1299783  PMID: 9675210

Abstract

Steady-state and time-resolved fluorescence spectroscopy was used to follow the local and global changes in structure and dynamics during chemical and thermal denaturation of unlabeled human serum albumin (HSA) and HSA with an acrylodan moiety bound to Cys34. Acrylodan fluorescence was monitored to obtain information about unfolding processes in domain I, and the emission of the Trp residue at position 214 was used to examine domain II. In addition, Trp-to-acrylodan resonance energy transfer was examined to probe interdomain spatial relationships during unfolding. Increasing the temperature to less than 50 degrees C or adding less than 1.0 M GdHCl resulted in an initial, reversible separation of domains I and II. Denaturation by heating to 70 degrees C or by adding 2.0 M GdHCl resulted in irreversible unfolding of domain II. Further denaturation of HSA by either method resulted in irreversible unfolding of domain I. These results clearly demonstrate that HSA unfolds by a pathway involving at least three distinct steps. The low detection limits and high information content of dual probe fluorescence should allow this technique to be used to study the unfolding behavior of entrapped or immobilized HSA.

Full Text

The Full Text of this article is available as a PDF (123.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S., Panda R. Mosquito collections by light traps in Bastar. J Commun Dis. 1991 Jun;23(2):162–164. [PubMed] [Google Scholar]
  2. Brown K. F., Crooks M. J. Displacement of tolbutamide, glibencalmide and chlorpropamide from serum albumin by anionic drugs. Biochem Pharmacol. 1976 May 15;25(10):1175–1178. doi: 10.1016/0006-2952(76)90365-8. [DOI] [PubMed] [Google Scholar]
  3. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  4. Clark I. D., Burtnick L. D. Fluorescence of equine platelet tropomyosin labeled with acrylodan. Arch Biochem Biophys. 1988 Feb 1;260(2):595–600. doi: 10.1016/0003-9861(88)90486-9. [DOI] [PubMed] [Google Scholar]
  5. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994 Feb;66(2 Pt 1):482–501. doi: 10.1016/s0006-3495(94)80799-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farruggia B., García G., D'Angelo C., Picó G. Destabilization of human serum albumin by polyethylene glycols studied by thermodynamical equilibrium and kinetic approaches. Int J Biol Macromol. 1997 Feb;20(1):43–51. doi: 10.1016/s0141-8130(96)01150-6. [DOI] [PubMed] [Google Scholar]
  8. Hagag N., Birnbaum E. R., Darnall D. W. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Biochemistry. 1983 May 10;22(10):2420–2427. doi: 10.1021/bi00279a018. [DOI] [PubMed] [Google Scholar]
  9. Helms M. K., Petersen C. E., Bhagavan N. V., Jameson D. M. Time-resolved fluorescence studies on site-directed mutants of human serum albumin. FEBS Lett. 1997 May 12;408(1):67–70. doi: 10.1016/s0014-5793(97)00389-x. [DOI] [PubMed] [Google Scholar]
  10. Hultmark D., Borg K. O., Elofsson R., Palmer L. Interaction between salicylic acid and indomethacin in binding to human serum albumin. Acta Pharm Suec. 1975;12(3):259–276. [PubMed] [Google Scholar]
  11. Ingersoll C. M., Jordan J. D., Bright F. V. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins. Anal Chem. 1996 Sep 15;68(18):3194–3198. doi: 10.1021/ac960315q. [DOI] [PubMed] [Google Scholar]
  12. Jordan J. D., Dunbar R. A., Bright F. V. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel. Anal Chem. 1995 Jul 15;67(14):2436–2443. doi: 10.1021/ac00110a019. [DOI] [PubMed] [Google Scholar]
  13. Keresztes-Nagy S., Mais R. F., Oester Y. T., Zaroslinski J. F. Protein binding methodology: comparison of equilibrium dialysis and frontal analysis chromatography in the study of salicylate binding. Anal Biochem. 1972 Jul;48(1):80–89. doi: 10.1016/0003-2697(72)90172-8. [DOI] [PubMed] [Google Scholar]
  14. Lakowicz J. R., Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry. 1973 Oct 9;12(21):4161–4170. doi: 10.1021/bi00745a020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee J. Y., Hirose M. Partially folded state of the disulfide-reduced form of human serum albumin as an intermediate for reversible denaturation. J Biol Chem. 1992 Jul 25;267(21):14753–14758. [PubMed] [Google Scholar]
  16. Lundgren J. S., Heitz M. P., Bright F. V. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles. Anal Chem. 1995 Oct 15;67(20):3775–3781. doi: 10.1021/ac00116a025. [DOI] [PubMed] [Google Scholar]
  17. Narazaki R., Maruyama T., Otagiri M. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochim Biophys Acta. 1997 Apr 4;1338(2):275–281. doi: 10.1016/s0167-4838(96)00221-x. [DOI] [PubMed] [Google Scholar]
  18. Pico G. A. Thermal stability of human serum albumin by sodium halide salts. Biochem Mol Biol Int. 1996 Feb;38(1):1–6. [PubMed] [Google Scholar]
  19. Picó G. A. Thermodynamic features of the thermal unfolding of human serum albumin. Int J Biol Macromol. 1997 Feb;20(1):63–73. doi: 10.1016/s0141-8130(96)01153-1. [DOI] [PubMed] [Google Scholar]
  20. Picó G. Thermodynamic aspects of the thermal stability of human serum albumin. Biochem Mol Biol Int. 1995 Aug;36(5):1017–1023. [PubMed] [Google Scholar]
  21. Prendergast F. G., Meyer M., Carlson G. L., Iida S., Potter J. D. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem. 1983 Jun 25;258(12):7541–7544. [PubMed] [Google Scholar]
  22. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  23. Sudlow G., Birkett D. J., Wade D. N. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976 Nov;12(6):1052–1061. [PubMed] [Google Scholar]
  24. Suzukida M., Le H. P., Shahid F., McPherson R. A., Birnbaum E. R., Darnall D. W. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH. Biochemistry. 1983 May 10;22(10):2415–2420. doi: 10.1021/bi00279a017. [DOI] [PubMed] [Google Scholar]
  25. Wallevik K. Reversible denaturation of human serum albumin by pH, temperature, and guanidine hydrochloride followed by optical rotation. J Biol Chem. 1973 Apr 25;248(8):2650–2655. [PubMed] [Google Scholar]
  26. Wang R., Sun S., Bekos E. J., Bright F. V. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Anal Chem. 1995 Jan 1;67(1):149–159. doi: 10.1021/ac00097a024. [DOI] [PubMed] [Google Scholar]
  27. Wetzel R., Becker M., Behlke J., Billwitz H., Böhm S., Ebert B., Hamann H., Krumbiegel J., Lassmann G. Temperature behaviour of human serum albumin. Eur J Biochem. 1980 Mar;104(2):469–478. doi: 10.1111/j.1432-1033.1980.tb04449.x. [DOI] [PubMed] [Google Scholar]
  28. Yem A. W., Epps D. E., Mathews W. R., Guido D. M., Richard K. A., Staite N. D., Deibel M. R., Jr Site-specific chemical modification of interleukin-1 beta by acrylodan at cysteine 8 and lysine 103. J Biol Chem. 1992 Feb 15;267(5):3122–3128. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES