Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1107–1116. doi: 10.1016/S0006-3495(98)77600-3

A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential.

J Gimsa 1, D Wachner 1
PMCID: PMC1299785  PMID: 9675212

Abstract

Dielectric properties of suspended cells are explored by analysis of the frequency-dependent response to electric fields. Impedance (IMP) registers the electric response, and kinetic phenomena like orientation, translation, deformation, or rotation can also be analyzed. All responses can generally be described by a unified theory. This is demonstrated by an RC model for the structural polarizations of biological cells, allowing intuitive comparison of the IMP, dielectrophoresis (DP), and electrorotation (ER) methods. For derivations, cells of prismatic geometry embedded in elementary cubes formed by the external solution were assumed. All geometrical constituents of the model were described by parallel circuits of a capacitor and a resistor. The IMP of the suspension is given by a meshwork of elementary cubes. Each elementary cube was modeled by two branches describing the current flow through and around the cell. To model DP and ER, the external branch was subdivided to obtain a reference potential. Real and imaginary parts of the potential difference of the cell surface and the reference reflect the frequency behavior of DP and ER. The scheme resembles an unbalanced Wheatstone bridge, in which IMP measures the current-voltage behavior of the feed signal and DP and ER are the measuring signal. Model predictions were consistent with IMP, DP, and ER experiments on human red cells, as well as with the frequency dependence of field-induced hemolysis. The influential radius concept is proposed, which allows easy derivation of simplified equations for the characteristic properties of a spherical single-shell model on the basis of the RC model.

Full Text

The Full Text of this article is available as a PDF (126.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackmann J. J., Seitz M. A. Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng. 1984;11(4):281–311. [PubMed] [Google Scholar]
  2. Asami K., Takahashi Y., Takashima S. Dielectric properties of mouse lymphocytes and erythrocytes. Biochim Biophys Acta. 1989 Jan 17;1010(1):49–55. doi: 10.1016/0167-4889(89)90183-3. [DOI] [PubMed] [Google Scholar]
  3. Asami K., Yonezawa T. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J. 1996 Oct;71(4):2192–2200. doi: 10.1016/S0006-3495(96)79420-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballario C., Bonincontro A., Cametti C., Rosi A., Sportelli L. Effect of extracellular alkali metal salts on the electric parameters of human erythrocytes in normal and pathological conditions (homozygous beta-thalassemia). Z Naturforsch C. 1984 Nov-Dec;39(11-12):1163–1169. doi: 10.1515/znc-1984-11-1230. [DOI] [PubMed] [Google Scholar]
  5. Bao J. Z., Davis C. C., Schmukler R. E. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition. Biophys J. 1992 May;61(5):1427–1434. doi: 10.1016/S0006-3495(92)81948-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beving H., Eriksson L. E., Davey C. L., Kell D. B. Dielectric properties of human blood and erythrocytes at radio frequencies (0.2-10 MHz); dependence on cell volume fraction and medium composition. Eur Biophys J. 1994;23(3):207–215. doi: 10.1007/BF01007612. [DOI] [PubMed] [Google Scholar]
  7. Burt J. P., Pethig R., Gascoyne P. R., Becker F. F. Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta. 1990 Apr 23;1034(1):93–101. doi: 10.1016/0304-4165(90)90158-s. [DOI] [PubMed] [Google Scholar]
  8. Crane J. S., Pohl H. A. Theoretical models of cellular dielectrophoresis. J Theor Biol. 1972 Oct;37(1):15–41. doi: 10.1016/0022-5193(72)90113-0. [DOI] [PubMed] [Google Scholar]
  9. Engström K. G., Möller B., Meiselman H. J. Optical evaluation of red blood cell geometry using micropipette aspiration. Blood Cells. 1992;18(2):241–265. [PubMed] [Google Scholar]
  10. FRICKE H. Relation of the permitivity of biological cell suspensions to fractional cell volume. Nature. 1953 Oct 17;172(4381):731–732. doi: 10.1038/172731a0. [DOI] [PubMed] [Google Scholar]
  11. Fuhr G., Glaser R., Hagedorn R. Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells. Biophys J. 1986 Feb;49(2):395–402. doi: 10.1016/S0006-3495(86)83649-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuhr G., Kuzmin P. I. Behavior of cells in rotating electric fields with account to surface charges and cell structures. Biophys J. 1986 Nov;50(5):789–795. doi: 10.1016/S0006-3495(86)83519-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geier B. M., Wendt B., Arnold W. M., Zimmermann U. The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model. Biochim Biophys Acta. 1987 Jun 12;900(1):45–55. doi: 10.1016/0005-2736(87)90276-8. [DOI] [PubMed] [Google Scholar]
  14. Georgieva R., Neu B., Shilov V. M., Knippel E., Budde A., Latza R., Donath E., Kiesewetter H., Bäumler H. Low frequency electrorotation of fixed red blood cells. Biophys J. 1998 Apr;74(4):2114–2120. doi: 10.1016/S0006-3495(98)77918-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gimsa J., Müller T., Schnelle T., Fuhr G. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J. 1996 Jul;71(1):495–506. doi: 10.1016/S0006-3495(96)79251-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gimsa J., Schnelle T., Zechel G., Glaser R. Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin. Biophys J. 1994 Apr;66(4):1244–1253. doi: 10.1016/S0006-3495(94)80908-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grosse C., Schwan H. P. Cellular membrane potentials induced by alternating fields. Biophys J. 1992 Dec;63(6):1632–1642. doi: 10.1016/S0006-3495(92)81740-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hölzel R. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J. 1997 Aug;73(2):1103–1109. doi: 10.1016/S0006-3495(97)78142-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaler K. V., Jones T. B. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J. 1990 Feb;57(2):173–182. doi: 10.1016/S0006-3495(90)82520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lisin R., Ginzburg B. Z., Schlesinger M., Feldman Y. Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. Biochim Biophys Acta. 1996 Apr 3;1280(1):34–40. doi: 10.1016/0005-2736(95)00266-9. [DOI] [PubMed] [Google Scholar]
  21. Marszalek P., Liu D. S., Tsong T. Y. Schwan equation and transmembrane potential induced by alternating electric field. Biophys J. 1990 Oct;58(4):1053–1058. doi: 10.1016/S0006-3495(90)82447-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PAULY H., SCHWAN H. P. Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale; Ein Modell fur das dielektrische Verhalten von Zellsuspensionen und von Proteinlösungen. Z Naturforsch B. 1959 Feb;14B(2):125–131. [PubMed] [Google Scholar]
  23. Paul R., Otwinowski M. The theory of the frequency response of ellipsoidal biological cells in rotating electrical fields. J Theor Biol. 1991 Feb 21;148(4):495–519. doi: 10.1016/s0022-5193(05)80233-4. [DOI] [PubMed] [Google Scholar]
  24. Pauly H., Schwan H. P. Dielectric properties and ion mobility in erythrocytes. Biophys J. 1966 Sep;6(5):621–639. doi: 10.1016/S0006-3495(66)86682-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pethig R., Kell D. B. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987 Aug;32(8):933–970. doi: 10.1088/0031-9155/32/8/001. [DOI] [PubMed] [Google Scholar]
  26. SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
  27. Sukhorukov V. L., Zimmermann U. Electrorotation of erythrocytes treated with dipicrylamine: mobile charges within the membrane show their "signature" in rotational spectra. J Membr Biol. 1996 Sep;153(2):161–169. doi: 10.1007/s002329900119. [DOI] [PubMed] [Google Scholar]
  28. Takashima S., Asami K. Calculation and measurement of the dipole moment of small proteins: use of protein data base. Biopolymers. 1993 Jan;33(1):59–68. doi: 10.1002/bip.360330107. [DOI] [PubMed] [Google Scholar]
  29. Wang X. B., Huang Y., Gascoyne P. R., Becker F. F., Hölzel R., Pethig R. Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta. 1994 Aug 3;1193(2):330–344. doi: 10.1016/0005-2736(94)90170-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES