Abstract
By using Bio-Beads as a detergent-removing agent, it has been possible to produce detergent-depleted two-dimensional crystals of purified Ca-ATPase. The crystallinity and morphology of these different crystals were analyzed by electron microscopy under different experimental conditions. A lipid-to-protein ratio below 0.4 w/w was required for crystal formation. The rate of detergent removal critically affected crystal morphology, and large multilamellar crystalline sheets or wide unilamellar tubes were generated upon slow or fast detergent removal, respectively. Electron crystallographic analysis indicated unit cell parameters of a = 159 A, b = 54 A, and gamma = 90 degrees for both types of crystals, and projection maps at 15-A resolution were consistent with Ca-ATPase molecules alternately facing the two sides of the membrane. Crystal formation was also affected by the protein conformation. Indeed, tubular and multilamellar crystals both required the presence of Ca2+; the presence of ADP gave rise to another type of packing within the unit cell (a = 86 A, b = 77 A, and gamma = 90 degrees), while maintaining a bipolar orientation of the molecules within the bilayer. All of the results are discussed in terms of nucleation and crystal growth, and a model of crystallogenesis is proposed that may be generally true for asymmetrical proteins with a large hydrophilic cytoplasmic domain.
Full Text
The Full Text of this article is available as a PDF (839.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Champeil P., Guillain F., Vénien C., Gingold M. P. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation. Biochemistry. 1985 Jan 1;24(1):69–81. doi: 10.1021/bi00322a012. [DOI] [PubMed] [Google Scholar]
- Cheong G. W., Young H. S., Ogawa H., Toyoshima C., Stokes D. L. Lamellar stacking in three-dimensional crystals of Ca(2+)-ATPase from sarcoplasmic reticulum. Biophys J. 1996 Apr;70(4):1689–1699. doi: 10.1016/S0006-3495(96)79731-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolder M., Engel A., Zulauf M. The micelle to vesicle transition of lipids and detergents in the presence of a membrane protein: towards a rationale for 2D crystallization. FEBS Lett. 1996 Mar 11;382(1-2):203–208. doi: 10.1016/0014-5793(96)00180-9. [DOI] [PubMed] [Google Scholar]
- Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
- Dux L., Pikula S., Mullner N., Martonosi A. Crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1987 May 15;262(14):6439–6442. [PubMed] [Google Scholar]
- Dux L., Taylor K. A., Ting-Beall H. P., Martonosi A. Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J Biol Chem. 1985 Sep 25;260(21):11730–11743. [PubMed] [Google Scholar]
- Forge V., Mintz E., Guillain F. Ca2+ binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H+ and Mg2+. J Biol Chem. 1993 May 25;268(15):10953–10960. [PubMed] [Google Scholar]
- Hao L., Rigaud J. L., Inesi G. Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem. 1994 May 13;269(19):14268–14275. [PubMed] [Google Scholar]
- Herbert H., Skriver E., Maunsbach A. B. Three-dimensional structure of renal Na,K-ATPase determined by electron microscopy of membrane crystals. FEBS Lett. 1985 Jul 22;187(1):182–186. doi: 10.1016/0014-5793(85)81238-2. [DOI] [PubMed] [Google Scholar]
- Iwane A. H., Ikeda I., Kimura Y., Fujiyoshi Y., Altendorf K., Epstein W. Two-dimensional crystals of the Kdp-ATPase of Escherichia coli. FEBS Lett. 1996 Nov 4;396(2-3):172–176. doi: 10.1016/0014-5793(96)01096-4. [DOI] [PubMed] [Google Scholar]
- Lacapère J. J., Bennett N., Dupont Y., Guillain F. pH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains. J Biol Chem. 1990 Jan 5;265(1):348–353. [PubMed] [Google Scholar]
- Lacapère J. J., Stokes D. L., Mosser G., Ranck J. L., Leblanc G., Rigaud J. L. Two-dimensional crystal formation from solubilized membrane proteins using Bio-Beads to remove detergent. Ann N Y Acad Sci. 1997 Nov 3;834:9–18. doi: 10.1111/j.1749-6632.1997.tb52221.x. [DOI] [PubMed] [Google Scholar]
- Lasic D. D. The mechanism of vesicle formation. Biochem J. 1988 Nov 15;256(1):1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy D., Gulik A., Seigneuret M., Rigaud J. L. Phospholipid vesicle solubilization and reconstitution by detergents. Symmetrical analysis of the two processes using octaethylene glycol mono-n-dodecyl ether. Biochemistry. 1990 Oct 9;29(40):9480–9488. doi: 10.1021/bi00492a022. [DOI] [PubMed] [Google Scholar]
- Levy D., Seigneuret M., Bluzat A., Rigaud J. L. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem. 1990 Nov 15;265(32):19524–19534. [PubMed] [Google Scholar]
- Lund S., Orlowski S., de Foresta B., Champeil P., le Maire M., Møller J. V. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1989 Mar 25;264(9):4907–4915. [PubMed] [Google Scholar]
- Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
- Lévy D., Bluzat A., Seigneuret M., Rigaud J. L. A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim Biophys Acta. 1990 Jun 27;1025(2):179–190. doi: 10.1016/0005-2736(90)90096-7. [DOI] [PubMed] [Google Scholar]
- Lévy D., Gulik A., Bluzat A., Rigaud J. L. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta. 1992 Jun 30;1107(2):283–298. doi: 10.1016/0005-2736(92)90415-i. [DOI] [PubMed] [Google Scholar]
- Misra M., Taylor D., Oliver T., Taylor K. Effect of organic anions on the crystallization of the Ca2(+)-ATPase of muscle sarcoplasmic reticulum. Biochim Biophys Acta. 1991 Mar 8;1077(1):107–118. doi: 10.1016/0167-4838(91)90532-5. [DOI] [PubMed] [Google Scholar]
- Mohraz M., Yee M., Smith P. R. Novel crystalline sheets of Na,K-ATPase induced by phospholipase A2. J Ultrastruct Res. 1985 Oct-Nov;93(1-2):17–26. doi: 10.1016/0889-1605(85)90081-3. [DOI] [PubMed] [Google Scholar]
- Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
- Møller J. V., le Maire M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem. 1993 Sep 5;268(25):18659–18672. [PubMed] [Google Scholar]
- Pikula S., Mullner N., Dux L., Martonosi A. Stabilization and crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5277–5286. [PubMed] [Google Scholar]
- Rigaud J. L., Mosser G., Lacapere J. J., Olofsson A., Levy D., Ranck J. L. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol. 1997 Apr;118(3):226–235. doi: 10.1006/jsbi.1997.3848. [DOI] [PubMed] [Google Scholar]
- Rigaud J. L., Pitard B., Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta. 1995 Oct 10;1231(3):223–246. doi: 10.1016/0005-2728(95)00091-v. [DOI] [PubMed] [Google Scholar]
- Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
- Shi D., Hsiung H. H., Pace R. C., Stokes D. L. Preparation and analysis of large, flat crystals of Ca(2+)-ATPase for electron crystallography. Biophys J. 1995 Mar;68(3):1152–1162. doi: 10.1016/S0006-3495(95)80291-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes D. L., Green N. M. Structure of CaATPase: electron microscopy of frozen-hydrated crystals at 6 A resolution in projection. J Mol Biol. 1990 Jun 5;213(3):529–538. doi: 10.1016/s0022-2836(05)80213-x. [DOI] [PubMed] [Google Scholar]
- Stokes D. L., Green N. M. Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys J. 1990 Jan;57(1):1–14. doi: 10.1016/S0006-3495(90)82501-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes D. L., Lacapère J. J. Conformation of Ca(2+)-ATPase in two crystal forms. Effects of Ca2+, thapsigargin, adenosine 5'-(beta, gamma-methylene)triphosphate), and chromium(III)-ATP on crystallization. J Biol Chem. 1994 Apr 15;269(15):11606–11613. [PubMed] [Google Scholar]
- Taylor K. A., Mullner N., Pikula S., Dux L., Peracchia C., Varga S., Martonosi A. Electron microscope observations on Ca2+-ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5287–5294. [PubMed] [Google Scholar]
- Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
- Valpuesta J. M., Carrascosa J. L., Henderson R. Analysis of electron microscope images and electron diffraction patterns of thin crystals of phi 29 connectors in ice. J Mol Biol. 1994 Jul 22;240(4):281–287. doi: 10.1006/jmbi.1994.1445. [DOI] [PubMed] [Google Scholar]
- Varga S., Taylor K. A., Martonosi A. Effects of solutes on the formation of crystalline sheets of the Ca(2+)-ATPase in detergent-solubilized sarcoplasmic reticulum. Biochim Biophys Acta. 1991 Dec 9;1070(2):374–386. doi: 10.1016/0005-2736(91)90078-m. [DOI] [PubMed] [Google Scholar]
- Varga S. Three-dimensional (type I) microcrystals of detergent-solubilized membrane-bound gastric (H+, K+)-ATPase enzyme from hog and rabbit stomachs. Acta Physiol Hung. 1994;82(4):365–376. [PubMed] [Google Scholar]
- Xian Y., Hebert H. Three-dimensional structure of the porcine gastric H,K-ATPase from negatively stained crystals. J Struct Biol. 1997 Apr;118(3):169–177. doi: 10.1006/jsbi.1997.3847. [DOI] [PubMed] [Google Scholar]
- Yonekura K., Stokes D. L., Sasabe H., Toyoshima C. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis. Biophys J. 1997 Mar;72(3):997–1005. doi: 10.1016/S0006-3495(97)78752-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young H. S., Rigaud J. L., Lacapère J. J., Reddy L. G., Stokes D. L. How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase. Biophys J. 1997 Jun;72(6):2545–2558. doi: 10.1016/S0006-3495(97)78898-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Toyoshima C., Yonekura K., Green N. M., Stokes D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature. 1998 Apr 23;392(6678):835–839. doi: 10.1038/33959. [DOI] [PubMed] [Google Scholar]