Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Sep;75(3):1340–1353. doi: 10.1016/S0006-3495(98)74052-4

Kinetics of Na(+)-dependent conformational changes of rabbit kidney Na+,K(+)-ATPase.

R J Clarke 1, D J Kane 1, H J Apell 1, M Roudna 1, E Bamberg 1
PMCID: PMC1299808  PMID: 9726935

Abstract

The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.

Full Text

The Full Text of this article is available as a PDF (145.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers R. W. Biochemical aspects of active transport. Annu Rev Biochem. 1967;36:727–756. doi: 10.1146/annurev.bi.36.070167.003455. [DOI] [PubMed] [Google Scholar]
  2. Apell H. J., Häring V., Roudna M. Na,K-ATPase in artificial lipid vesicles. Comparison of Na,K and Na-only pumping mode. Biochim Biophys Acta. 1990 Mar 30;1023(1):81–90. doi: 10.1016/0005-2736(90)90012-d. [DOI] [PubMed] [Google Scholar]
  3. Apell H. J., Roudna M., Corrie J. E., Trentham D. R. Kinetics of the phosphorylation of Na,K-ATPase by inorganic phosphate detected by a fluorescence method. Biochemistry. 1996 Aug 20;35(33):10922–10930. doi: 10.1021/bi960238t. [DOI] [PubMed] [Google Scholar]
  4. Borlinghaus R., Apell H. J. Current transients generated by the Na+/K+-ATPase after an ATP concentration jump: dependence on sodium and ATP concentration. Biochim Biophys Acta. 1988 Apr 7;939(2):197–206. doi: 10.1016/0005-2736(88)90063-6. [DOI] [PubMed] [Google Scholar]
  5. Borlinghaus R., Apell H. J., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP. J Membr Biol. 1987;97(3):161–178. doi: 10.1007/BF01869220. [DOI] [PubMed] [Google Scholar]
  6. Bühler R., Apell H. J. Sequential potassium binding at the extracellular side of the Na,K-pump. J Membr Biol. 1995 May;145(2):165–173. doi: 10.1007/BF00237374. [DOI] [PubMed] [Google Scholar]
  7. Bühler R., Stürmer W., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: I. Kinetics of local field changes studied by time-resolved fluorescence measurements. J Membr Biol. 1991 Apr;121(2):141–161. doi: 10.1007/BF01870529. [DOI] [PubMed] [Google Scholar]
  8. Campos M., Beaugé L. Effects of magnesium and ATP on pre-steady-state phosphorylation kinetics of the Na+,K(+)-ATPase. Biochim Biophys Acta. 1992 Mar 23;1105(1):51–60. doi: 10.1016/0005-2736(92)90161-e. [DOI] [PubMed] [Google Scholar]
  9. Campos M., Beaugé L. Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover. J Biol Chem. 1994 Jul 8;269(27):18028–18036. [PubMed] [Google Scholar]
  10. Cornelius F. Functional reconstitution of the sodium pump. Kinetics of exchange reactions performed by reconstituted Na/K-ATPase. Biochim Biophys Acta. 1991 Mar 7;1071(1):19–66. doi: 10.1016/0304-4157(91)90011-k. [DOI] [PubMed] [Google Scholar]
  11. Cornelius F., Skou J. C. The sided action of Na+ on reconstituted shark Na+/K+-ATPase engaged in Na+-Na+ exchange accompanied by ATP hydrolysis. II. Transmembrane allosteric effects on Na+ affinity. Biochim Biophys Acta. 1988 Oct 6;944(2):223–232. doi: 10.1016/0005-2736(88)90435-x. [DOI] [PubMed] [Google Scholar]
  12. Fedosova N. U., Cornelius F., Forbush B., 3rd, Klodos I. Diversity of the E2P phosphoforms of Na,K-ATPase. Ann N Y Acad Sci. 1997 Nov 3;834:386–389. doi: 10.1111/j.1749-6632.1997.tb52278.x. [DOI] [PubMed] [Google Scholar]
  13. Fedosova N. U., Cornelius F., Klodos I. Fluorescent styryl dyes as probes for Na,K-ATPase reaction mechanism: significance of the charge of the hydrophilic moiety of RH dyes. Biochemistry. 1995 Dec 26;34(51):16806–16814. doi: 10.1021/bi00051a031. [DOI] [PubMed] [Google Scholar]
  14. Fendler K., Grell E., Bamberg E. Kinetics of pump currents generated by the Na+,K+-ATPase. FEBS Lett. 1987 Nov 16;224(1):83–88. doi: 10.1016/0014-5793(87)80427-1. [DOI] [PubMed] [Google Scholar]
  15. Fendler K., Grell E., Haubs M., Bamberg E. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 1985 Dec 1;4(12):3079–3085. doi: 10.1002/j.1460-2075.1985.tb04048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fendler K., Jaruschewski S., Hobbs A., Albers W., Froehlich J. P. Pre-steady-state charge translocation in NaK-ATPase from eel electric organ. J Gen Physiol. 1993 Oct;102(4):631–666. doi: 10.1085/jgp.102.4.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Forbush B., 3rd Na+ movement in a single turnover of the Na pump. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5310–5314. doi: 10.1073/pnas.81.17.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Forbush B., 3rd Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP. J Biol Chem. 1987 Aug 15;262(23):11104–11115. [PubMed] [Google Scholar]
  19. Frank J., Zouni A., van Hoek A., Visser A. J., Clarke R. J. Interaction of the fluorescent probe RH421 with ribulose-1,5-bisphosphate carboxylase/oxygenase and with Na+,K(+)-ATPase membrane fragments. Biochim Biophys Acta. 1996 Apr 3;1280(1):51–64. doi: 10.1016/0005-2736(95)00277-4. [DOI] [PubMed] [Google Scholar]
  20. Friedrich T., Bamberg E., Nagel G. Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J. 1996 Nov;71(5):2486–2500. doi: 10.1016/S0006-3495(96)79442-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Friedrich T., Nagel G. Comparison of Na+/K(+)-ATPase pump currents activated by ATP concentration or voltage jumps. Biophys J. 1997 Jul;73(1):186–194. doi: 10.1016/S0006-3495(97)78059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ghosh M. C., Jencks W. P. Phosphorylation of the sodium-potassium adenosinetriphosphatase with adenosine triphosphate and sodium ion that requires subconformations in addition to principal E1 and E2 conformations of the enzyme. Biochemistry. 1996 Sep 24;35(38):12587–12590. doi: 10.1021/bi961324w. [DOI] [PubMed] [Google Scholar]
  23. Grell E., Warmuth R., Lewitzki E., Ruf H. Ionics and conformational transitions of Na,K-ATPase. Acta Physiol Scand Suppl. 1992;607:213–221. [PubMed] [Google Scholar]
  24. Heyse S., Wuddel I., Apell H. J., Stürmer W. Partial reactions of the Na,K-ATPase: determination of rate constants. J Gen Physiol. 1994 Aug;104(2):197–240. doi: 10.1085/jgp.104.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hobbs A. S., Albers R. W., Froehlich J. P. Potassium-induced changes in phosphorylation and dephosphorylation of (Na+ + K+)-ATPase observed in the transient state. J Biol Chem. 1980 Apr 25;255(8):3395–3402. [PubMed] [Google Scholar]
  26. Jorgensen P. L. Isolation of (Na+ plus K+)-ATPase. Methods Enzymol. 1974;32:277–290. [PubMed] [Google Scholar]
  27. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  28. Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
  29. Kane D. J., Fendler K., Grell E., Bamberg E., Taniguchi K., Froehlich J. P., Clarke R. J. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry. 1997 Oct 28;36(43):13406–13420. doi: 10.1021/bi970598w. [DOI] [PubMed] [Google Scholar]
  30. Kane D. J., Grell E., Bamberg E., Clarke R. J. Dephosphorylation kinetics of pig kidney Na+,K+-ATPase. Biochemistry. 1998 Mar 31;37(13):4581–4591. doi: 10.1021/bi972813e. [DOI] [PubMed] [Google Scholar]
  31. Kapakos J. G., Steinberg M. Fluorescent labeling of (Na+ + K+)-ATPase by 5-iodoacetamidofluorescein. Biochim Biophys Acta. 1982 Dec 22;693(2):493–496. doi: 10.1016/0005-2736(82)90458-8. [DOI] [PubMed] [Google Scholar]
  32. Kaplan J. H., Forbush B., 3rd, Hoffman J. F. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry. 1978 May 16;17(10):1929–1935. doi: 10.1021/bi00603a020. [DOI] [PubMed] [Google Scholar]
  33. Karlish S. J. Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr. 1980 Aug;12(3-4):111–136. doi: 10.1007/BF00744678. [DOI] [PubMed] [Google Scholar]
  34. Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
  35. Keillor J. W., Jencks W. P. Phosphorylation of the sodium--potassium adenosinetriphosphatase proceeds through a rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1996 Feb 27;35(8):2750–2753. doi: 10.1021/bi951370g. [DOI] [PubMed] [Google Scholar]
  36. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  37. Mårdh S., Zetterqvist O. Phosphorylation and dephosphorylation reactions of bovine brain (Na+-K+)-stimulated ATP phosphohydrolase studied by a rapid mixing technique. Biochim Biophys Acta. 1974 Jun 18;350(2):473–483. doi: 10.1016/0005-2744(74)90523-3. [DOI] [PubMed] [Google Scholar]
  38. Nagel G., Fendler K., Grell E., Bamberg E. Na+ currents generated by the purified (Na+ + K+)-ATPase on planar lipid membranes. Biochim Biophys Acta. 1987 Jul 23;901(2):239–249. doi: 10.1016/0005-2736(87)90120-9. [DOI] [PubMed] [Google Scholar]
  39. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  40. Pratap P. R., Palit A., Grassi-Nemeth E., Robinson J. D. Kinetics of conformational changes associated with potassium binding to and release from Na+/K(+)-ATPase. Biochim Biophys Acta. 1996 Dec 4;1285(2):203–211. doi: 10.1016/s0005-2736(96)00162-9. [DOI] [PubMed] [Google Scholar]
  41. Pratap P. R., Robinson J. D. Rapid kinetic analyses of the Na+/K(+)-ATPase distinguish among different criteria for conformational change. Biochim Biophys Acta. 1993 Sep 5;1151(1):89–98. doi: 10.1016/0005-2736(93)90075-b. [DOI] [PubMed] [Google Scholar]
  42. Pratap P. R., Robinson J. D., Steinberg M. I. The reaction sequence of the Na+/K(+)-ATPase: rapid kinetic measurements distinguish between alternative schemes. Biochim Biophys Acta. 1991 Nov 4;1069(2):288–298. doi: 10.1016/0005-2736(91)90137-w. [DOI] [PubMed] [Google Scholar]
  43. Schulz S., Apell H. J. Investigation of ion binding to the cytoplasmic binding sites of the Na,K-pump. Eur Biophys J. 1995;23(6):413–421. doi: 10.1007/BF00196828. [DOI] [PubMed] [Google Scholar]
  44. Schuurmans Stekhoven F. M., Swarts H. G., Helmich-de Jong M. L., de Pont J. J., Bonting S. L. Free protons do not substitute for sodium ions in buffer-mediated phosphorylation of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1986 Jan 16;854(1):21–30. doi: 10.1016/0005-2736(86)90060-x. [DOI] [PubMed] [Google Scholar]
  45. Smirnova I. N., Faller L. D. Mechanism of K+ interaction with fluorescein 5'-isothiocyanate-modified Na+,K(+)-ATPase. J Biol Chem. 1993 Aug 5;268(22):16120–16123. [PubMed] [Google Scholar]
  46. Smirnova I. N., Lin S. H., Faller L. D. An equivalent site mechanism for Na+ and K+ binding to sodium pump and control of the conformational change reported by fluorescein 5'-isothiocyanate modification. Biochemistry. 1995 Jul 11;34(27):8657–8667. doi: 10.1021/bi00027a015. [DOI] [PubMed] [Google Scholar]
  47. Sokolov V. S., Apell H. J., Corrie J. E., Trentham D. R. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP. Biophys J. 1998 May;74(5):2285–2298. doi: 10.1016/S0006-3495(98)77938-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Steinberg M., Karlish S. J. Studies on conformational changes in Na,K-ATPase labeled with 5-iodoacetamidofluorescein. J Biol Chem. 1989 Feb 15;264(5):2726–2734. [PubMed] [Google Scholar]
  49. Stürmer W., Apell H. J., Wuddel I., Läuger P. Conformational transitions and change translocation by the Na,K pump: comparison of optical and electrical transients elicited by ATP-concentration jumps. J Membr Biol. 1989 Aug;110(1):67–86. doi: 10.1007/BF01870994. [DOI] [PubMed] [Google Scholar]
  50. Stürmer W., Bühler R., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol. 1991 Apr;121(2):163–176. doi: 10.1007/BF01870530. [DOI] [PubMed] [Google Scholar]
  51. Thirlwell H., Corrie J. E., Reid G. P., Trentham D. R., Ferenczi M. A. Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase. Biophys J. 1994 Dec;67(6):2436–2447. doi: 10.1016/S0006-3495(94)80730-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES