Abstract
Perdeuterated indole-d6 and N-methylated indole-d6 were solubilized in lamellar liquid crystalline phases composed of either 1,2-diacyl-glycero-3-phosphocholine (14:0)/water or 1,2-dialkyl-glycero-3-phosphocholine(14:0/water. The molecular ordering of the tryptophan analogs was determined from deuteron quadrupole splittings observed in 2H-NMR spectra on macroscopically aligned lipid bilayers. NMR spectra were recorded with the bilayers oriented perpendicular to or parallel with the external magnetic field, and the values of the splittings differed by a factor of 2 between these distinct orientations, indicating fast rotational motion of the molecules about an axis parallel to the bilayer normal. In all cases the splittings were found to decrease with increasing temperature. Relatively large splittings were observed in all systems, demonstrating that the tryptophans partition into a highly anisotropic environment. Solubilization most likely occurs at the lipid/water interface, as indicated by 1H-NMR chemical shift studies. The 2H-NMR spectra obtained for each analog were found to be rather similar in ester and ether lipids, but with smaller splittings in the ether lipid under similar conditions. The difference was slightly less for the indole molecule. Furthermore, in both lipid systems the positions of the splittings from indole were different from those of N-methyl indole. The results suggest that 1) the tryptophan analogs are solubilized in the interfacial region of the lipid bilayer, 2) the behavior may be modulated by hydrogen bonding in the case of indole, and 3) hydrogen bonding with the lipid carbonyl groups is not likely to play a major role in the solubilization of single indole molecules in the ester lipid bilayer interface.
Full Text
The Full Text of this article is available as a PDF (87.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
- Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
- Durkin J. T., Providence L. L., Koeppe R. E., 2nd, Andersen O. S. Formation of non-beta 6.3-helical gramicidin channels between sequence-substituted gramicidin analogues. Biophys J. 1992 Apr;62(1):145–159. doi: 10.1016/S0006-3495(92)81801-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
- Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
- Ippolito J. A., Alexander R. S., Christianson D. W. Hydrogen bond stereochemistry in protein structure and function. J Mol Biol. 1990 Oct 5;215(3):457–471. doi: 10.1016/s0022-2836(05)80364-x. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Kachel K., Asuncion-Punzalan E., London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 1995 Nov 28;34(47):15475–15479. doi: 10.1021/bi00047a012. [DOI] [PubMed] [Google Scholar]
- Killian J. A., Salemink I., de Planque M. R., Lindblom G., Koeppe R. E., 2nd, Greathouse D. V. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996 Jan 23;35(3):1037–1045. doi: 10.1021/bi9519258. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladokhin A. S., Selsted M. E., White S. H. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J. 1997 Feb;72(2 Pt 1):794–805. doi: 10.1016/s0006-3495(97)78713-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Jennifer C., Dougherty Dennis A. The Cationminus signpi Interaction. Chem Rev. 1997 Aug 5;97(5):1303–1324. doi: 10.1021/cr9603744. [DOI] [PubMed] [Google Scholar]
- McKeone B. J., Pownall H. J., Massey J. B. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. Biochemistry. 1986 Nov 18;25(23):7711–7716. doi: 10.1021/bi00371a064. [DOI] [PubMed] [Google Scholar]
- Morein S., Strandberg E., Killian J. A., Persson S., Arvidson G., Koeppe R. E., 2nd, Lindblom G. Influence of membrane-spanning alpha-helical peptides on the phase behavior of the dioleoylphosphatidylcholine/water system. Biophys J. 1997 Dec;73(6):3078–3088. doi: 10.1016/S0006-3495(97)78335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell A. M., Koeppe R. E., 2nd, Andersen O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 1990 Nov 30;250(4985):1256–1259. doi: 10.1126/science.1700867. [DOI] [PubMed] [Google Scholar]
- Oppenheim A., Katzir Y., Fibach E., Goldfarb A., Rachmilewitz E. Hypomethylation of DNA derived from purified human erythroid cells correlates with gene activity of the beta-globin cluster. Blood. 1985 Nov;66(5):1202–1207. [PubMed] [Google Scholar]
- Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
- Plesniak L. A., Yu L., Dennis E. A. Conformation of micellar phospholipid bound to the active site of phospholipase A2. Biochemistry. 1995 Apr 18;34(15):4943–4951. doi: 10.1021/bi00015a005. [DOI] [PubMed] [Google Scholar]
- Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
- Seelig A. Interaction of a substance P agonist and of substance P antagonists with lipid membranes. A thermodynamic analysis. Biochemistry. 1992 Mar 24;31(11):2897–2904. doi: 10.1021/bi00126a008. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry. 1993 Jun 29;32(25):6307–6312. doi: 10.1021/bi00076a001. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Partitioning of tryptophan side-chain analogs between water and cyclohexane. Biochemistry. 1992 Dec 29;31(51):12813–12818. doi: 10.1021/bi00166a015. [DOI] [PubMed] [Google Scholar]