Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Sep;75(3):1424–1438. doi: 10.1016/S0006-3495(98)74061-5

The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer.

C Veigel 1, M L Bartoo 1, D C White 1, J C Sparrow 1, J E Molloy 1
PMCID: PMC1299817  PMID: 9726944

Abstract

Muscle contraction is brought about by the cyclical interaction of myosin with actin coupled to the breakdown of ATP. The current view of the mechanism is that the bound actomyosin complex (or "cross-bridge") produces force and movement by a change in conformation. This process is known as the "working stroke." We have measured the stiffness and working stroke of a single cross-bridge (kappa xb, dxb, respectively) with an optical tweezers transducer. Measurements were made with the "three bead" geometry devised by Finer et al. (1994), in which two beads, supported in optical traps, are used to hold an actin filament in the vicinity of a myosin molecule, which is immobilized on the surface of a third bead. The movements and forces produced by actomyosin interactions were measured by detecting the position of both trapped beads. We measured, and corrected for, series compliance in the system, which otherwise introduces large errors. First, we used video image analysis to measure the long-range, force-extension property of the actin-to-bead connection (kappa con), which is the main source of "end compliance." We found that force-extension diagrams were nonlinear and rather variable between preparations, i.e., end compliance depended not only upon the starting tension, but also upon the F-actin-bead pair used. Second, we measured kappa xb and kappa con during a single cross-bridge attachment by driving one optical tweezer with a sinusoidal oscillation while measuring the position of both beads. In this way, the bead held in the driven optical tweezer applied force to the cross-bridge, and the motion of the other bead measured cross-bridge movement. Under our experimental conditions (at approximately 2 pN of pretension), connection stiffness (kappa con) was 0.26 +/- 0.16 pN nm-1. We found that rabbit heavy meromyosin produced a working stroke of 5.5 nm, and cross-bridge stiffness (kappa xb) was 0.69 +/- 0.47 pN nm-1.

Full Text

The Full Text of this article is available as a PDF (315.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev. 1997 Jul;77(3):671–697. doi: 10.1152/physrev.1997.77.3.671. [DOI] [PubMed] [Google Scholar]
  2. Dupuis D. E., Guilford W. H., Wu J., Warshaw D. M. Actin filament mechanics in the laser trap. J Muscle Res Cell Motil. 1997 Feb;18(1):17–30. doi: 10.1023/a:1018672631256. [DOI] [PubMed] [Google Scholar]
  3. Ellington C. P. Power and efficiency of insect flight muscle. J Exp Biol. 1985 Mar;115:293–304. doi: 10.1242/jeb.115.1.293. [DOI] [PubMed] [Google Scholar]
  4. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  5. Guilford W. H., Dupuis D. E., Kennedy G., Wu J., Patlak J. B., Warshaw D. M. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J. 1997 Mar;72(3):1006–1021. doi: 10.1016/S0006-3495(97)78753-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  7. Huxley A. F., Tideswell S. Filament compliance and tension transients in muscle. J Muscle Res Cell Motil. 1996 Aug;17(4):507–511. doi: 10.1007/BF00123366. [DOI] [PubMed] [Google Scholar]
  8. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  9. Irving M., St Claire Allen T., Sabido-David C., Craik J. S., Brandmeier B., Kendrick-Jones J., Corrie J. E., Trentham D. R., Goldman Y. E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature. 1995 Jun 22;375(6533):688–691. doi: 10.1038/375688a0. [DOI] [PubMed] [Google Scholar]
  10. Ishijima A., Kojima H., Higuchi H., Harada Y., Funatsu T., Yanagida T. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys J. 1996 Jan;70(1):383–400. doi: 10.1016/S0006-3495(96)79582-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kojima H., Ishijima A., Yanagida T. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12962–12966. doi: 10.1073/pnas.91.26.12962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  13. Kushmerick M. J., Davies R. E. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Appendix. Free energy and enthalpy of atp hydrolysis in the sarcoplasm. Proc R Soc Lond B Biol Sci. 1969 Dec 23;174(1036):315–353. doi: 10.1098/rspb.1969.0096. [DOI] [PubMed] [Google Scholar]
  14. Linari M., Dobbie I., Reconditi M., Koubassova N., Irving M., Piazzesi G., Lombardi V. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys J. 1998 May;74(5):2459–2473. doi: 10.1016/S0006-3495(98)77954-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lombardi V., Piazzesi G., Ferenczi M. A., Thirlwell H., Dobbie I., Irving M. Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature. 1995 Apr 6;374(6522):553–555. doi: 10.1038/374553a0. [DOI] [PubMed] [Google Scholar]
  16. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  17. Meeusen R. L., Cande W. Z. N-ethylmaleimide-modified heavy meromyosin. A probe for actomyosin interactions. J Cell Biol. 1979 Jul;82(1):57–65. doi: 10.1083/jcb.82.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mehta A. D., Finer J. T., Spudich J. A. Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7927–7931. doi: 10.1073/pnas.94.15.7927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  20. Molloy J. E. Optical chopsticks: digital synthesis of multiple optical traps. Methods Cell Biol. 1998;55:205–216. doi: 10.1016/s0091-679x(08)60410-0. [DOI] [PubMed] [Google Scholar]
  21. Nishizaka T., Miyata H., Yoshikawa H., Ishiwata S., Kinosita K., Jr Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature. 1995 Sep 21;377(6546):251–254. doi: 10.1038/377251a0. [DOI] [PubMed] [Google Scholar]
  22. Offer G., Elliott A. Can a myosin molecule bind to two actin filaments? Nature. 1978 Jan 26;271(5643):325–329. doi: 10.1038/271325a0. [DOI] [PubMed] [Google Scholar]
  23. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Cell Biol. 1982;24:271–289. doi: 10.1016/s0091-679x(08)60661-5. [DOI] [PubMed] [Google Scholar]
  24. Pate E., Cooke R. A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil. 1989 Jun;10(3):181–196. doi: 10.1007/BF01739809. [DOI] [PubMed] [Google Scholar]
  25. Piazzesi G., Lombardi V. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J. 1995 May;68(5):1966–1979. doi: 10.1016/S0006-3495(95)80374-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  27. Saito K., Aoki T., Aoki T., Yanagida T. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap. Biophys J. 1994 Mar;66(3 Pt 1):769–777. doi: 10.1016/s0006-3495(94)80853-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simmons R. M., Finer J. T., Chu S., Spudich J. A. Quantitative measurements of force and displacement using an optical trap. Biophys J. 1996 Apr;70(4):1813–1822. doi: 10.1016/S0006-3495(96)79746-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  30. Woledge R. C., Reilly P. J. Molar enthalpy change for hydrolysis of phosphorylcreatine under conditions in muscle cells. Biophys J. 1988 Jul;54(1):97–104. doi: 10.1016/S0006-3495(88)82934-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woledge R. C. The energetics of tortoise muscle. J Physiol. 1968 Aug;197(3):685–707. doi: 10.1113/jphysiol.1968.sp008582. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES