Abstract
The assembly of single-chain Fv (scFv) antibody fragments, consisting of an interconnected variable heavy chain (VH) and variable light chain (VL), is a cooperative process that requires coupled folding and domain association. We report here an initial investigation of VH/VL domain-domain assembly with a site-directed mutagenesis study that probes a highly conserved VH/VL hydrogen bonding interaction. Gln168 of the S5 scFv (Kabat VH 39) is absolutely conserved in 95% of all VH, and Gln44 (Kabat VL 38) is found in 94% of all kappa VL (Glx in 95% of all lambda VL). These side chains form two hydrogen bonds in head-to-tail alignment across the VH/VL interface. Double mutant cycles at Gln168 and Gln44 were constructed to first investigate their contribution to thermodynamic folding stability, second to investigate whether stability can be improved, and third to determine whether refolding efficiencies are affected by mutations at these positions. The results demonstrate that the Gln168-Gln44 interaction is not a key determinant of S5 scFv folding stability, as sequential modification to alanine has no significant effect on the free energy of folding. Several mutations that alter the glutamines to methionine or charged amino acids significantly increase the thermodynamic stability by increasing the m(g) associated with the unfolding isotherm. These effects are hypothesized to arise largely from an increase in the VH/VL association free energy that leads to tighter coupling between domain-domain association and folding. All of the mutants also display a reduced antigen binding affinity. Single and double methionine mutants also displayed significant increases in refolding efficiency of 2.4- to 3-fold over the native scFv, whereas the double alanine/methionine mutants displayed moderate 1.9- to 2.4-fold enhancement. The results suggest that reengineering the VH/VL interface could be useful in improving the stability of single-chain antibodies, as Ala/Met mutations at these conserved positions increase the free energy of folding by 46% while minimally perturbing binding affinity. They also could be useful in improving scFv recovery from inclusion bodies as the mutations increase the refolding efficiency by more than twofold.
Full Text
The Full Text of this article is available as a PDF (176.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
- Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S. M., Lee T., Pope S. H., Riordan G. S., Whitlow M. Single-chain antigen-binding proteins. Science. 1988 Oct 21;242(4877):423–426. doi: 10.1126/science.3140379. [DOI] [PubMed] [Google Scholar]
- Bolen D. W., Santoro M. M. Unfolding free energy changes determined by the linear extrapolation method. 2. Incorporation of delta G degrees N-U values in a thermodynamic cycle. Biochemistry. 1988 Oct 18;27(21):8069–8074. doi: 10.1021/bi00421a015. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Hu C. Q., Lin L. N., Mos M. T. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989 Oct 17;28(21):8588–8596. doi: 10.1021/bi00447a048. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chothia C., Novotný J., Bruccoleri R., Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol. 1985 Dec 5;186(3):651–663. doi: 10.1016/0022-2836(85)90137-8. [DOI] [PubMed] [Google Scholar]
- Freund C., Honegger A., Hunziker P., Holak T. A., Plückthun A. Folding nuclei of the scFv fragment of an antibody. Biochemistry. 1996 Jun 25;35(25):8457–8464. doi: 10.1021/bi952764a. [DOI] [PubMed] [Google Scholar]
- Getzoff E. D., Tainer J. A., Olson A. J. Recognition and interactions controlling the assemblies of beta barrel domains. Biophys J. 1986 Jan;49(1):191–206. doi: 10.1016/S0006-3495(86)83634-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glockshuber R., Malia M., Pfitzinger I., Plückthun A. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry. 1990 Feb 13;29(6):1362–1367. doi: 10.1021/bi00458a002. [DOI] [PubMed] [Google Scholar]
- Gulliver G. A., Rumbley C. A., Carrero J., Voss E. W., Jr Relative conformational stabilities of single-chain pocket and groove-shaped antibody active sites including HCDR transplant intermediates. Biochemistry. 1995 Apr 18;34(15):5158–5163. doi: 10.1021/bi00015a029. [DOI] [PubMed] [Google Scholar]
- Hochman J., Gavish M., Inbar D., Givol D. Folding and interaction of subunits at the antibody combining site. Biochemistry. 1976 Jun 15;15(12):2706–2710. doi: 10.1021/bi00657a034. [DOI] [PubMed] [Google Scholar]
- Horne C., Klein M., Polidoulis I., Dorrington K. J. Noncovalent association of heavy and light chains of human immunoglobulins. III. Specific interactions between VH and VL. J Immunol. 1982 Aug;129(2):660–664. [PubMed] [Google Scholar]
- Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
- Jin L., Fendly B. M., Wells J. A. High resolution functional analysis of antibody-antigen interactions. J Mol Biol. 1992 Aug 5;226(3):851–865. doi: 10.1016/0022-2836(92)90636-x. [DOI] [PubMed] [Google Scholar]
- Klein M., Kortan C., Kells D. I., Dorrington K. J. Equilibrium and kinetic aspects of the interaction of isolated variable and constant domains of light chain with the Fd' fragment of immunoglobulin G. Biochemistry. 1979 Apr 17;18(8):1473–1481. doi: 10.1021/bi00575a014. [DOI] [PubMed] [Google Scholar]
- Knappik A., Plückthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 1995 Jan;8(1):81–89. doi: 10.1093/protein/8.1.81. [DOI] [PubMed] [Google Scholar]
- Lilie H., Jaenicke R., Buchner J. Characterization of a quaternary-structured folding intermediate of an antibody Fab-fragment. Protein Sci. 1995 May;4(5):917–924. doi: 10.1002/pro.5560040511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- London J., Skrzynia C., Goldberg M. E. Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem. 1974 Sep 1;47(2):409–415. doi: 10.1111/j.1432-1033.1974.tb03707.x. [DOI] [PubMed] [Google Scholar]
- Matouschek A., Matthews J. M., Johnson C. M., Fersht A. R. Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions. Protein Eng. 1994 Sep;7(9):1089–1095. doi: 10.1093/protein/7.9.1089. [DOI] [PubMed] [Google Scholar]
- Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantoliano M. W., Bird R. E., Johnson S., Asel E. D., Dodd S. W., Wood J. F., Hardman K. D. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry. 1991 Oct 22;30(42):10117–10125. doi: 10.1021/bi00106a007. [DOI] [PubMed] [Google Scholar]
- Reiter Y., Brinkmann U., Kreitman R. J., Jung S. H., Lee B., Pastan I. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry. 1994 May 10;33(18):5451–5459. doi: 10.1021/bi00184a014. [DOI] [PubMed] [Google Scholar]
- Rowe E. S. Dissociation and denaturation equilibria and kinetics of a homogeneous human immunoglobulin Fab fragment. Biochemistry. 1976 Feb 24;15(4):905–916. doi: 10.1021/bi00649a028. [DOI] [PubMed] [Google Scholar]
- Rowe E. S., Tanford C. Equilibrium and kinetics of the denaturation of a homogeneous human immunoglobulin light chain. Biochemistry. 1973 Nov 20;12(24):4822–4827. doi: 10.1021/bi00748a002. [DOI] [PubMed] [Google Scholar]
- Royer C. A. Improvements in the numerical analysis of thermodynamic data from biomolecular complexes. Anal Biochem. 1993 Apr;210(1):91–97. doi: 10.1006/abio.1993.1155. [DOI] [PubMed] [Google Scholar]
- Royer C. A., Smith W. R., Beechem J. M. Analysis of binding in macromolecular complexes: a generalized numerical approach. Anal Biochem. 1990 Dec;191(2):287–294. doi: 10.1016/0003-2697(90)90221-t. [DOI] [PubMed] [Google Scholar]
- Sandmaier B. M., Storb R., Appelbaum F. R., Gallatin W. M. An antibody that facilitates hematopoietic engraftment recognizes CD44. Blood. 1990 Aug 1;76(3):630–635. [PubMed] [Google Scholar]
- Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
- Sauer R. T., Milla M. E., Waldburger C. D., Brown B. M., Schildbach J. F. Sequence determinants of folding and stability for the P22 Arc repressor dimer. FASEB J. 1996 Jan;10(1):42–48. doi: 10.1096/fasebj.10.1.8566546. [DOI] [PubMed] [Google Scholar]
- Schreiber G., Buckle A. M., Fersht A. R. Stability and function: two constraints in the evolution of barstar and other proteins. Structure. 1994 Oct 15;2(10):945–951. doi: 10.1016/s0969-2126(94)00096-4. [DOI] [PubMed] [Google Scholar]
- Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452–456. doi: 10.1073/pnas.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
- Shortle D. Staphylococcal nuclease: a showcase of m-value effects. Adv Protein Chem. 1995;46:217–247. doi: 10.1016/s0065-3233(08)60336-8. [DOI] [PubMed] [Google Scholar]
- Tan P. H., Sandmaier B. M., Stayton P. S. Characterization of an anti-CD44 single-chain FV antibody that stimulates natural killer cell activity and induces TNF alpha release. Immunol Invest. 1995 Nov;24(6):907–926. doi: 10.3109/08820139509060717. [DOI] [PubMed] [Google Scholar]
- Tsunenaga M., Goto Y., Kawata Y., Hamaguchi K. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments. Biochemistry. 1987 Sep 22;26(19):6044–6051. doi: 10.1021/bi00393a015. [DOI] [PubMed] [Google Scholar]
- Zettlmeissl G., Rudolph R., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry. 1979 Dec 11;18(25):5567–5571. doi: 10.1021/bi00592a007. [DOI] [PubMed] [Google Scholar]