Abstract
The effect of ionic strength on the macroscopic and microscopic redox potentials and the heme environment of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F have been investigated by NMR and electrochemical methods. The redox potentials of this tetraheme protein are found to be ionic strength-dependent. Especially, the microscopic redox potentials of hemes 2 and 3 at the fourth reduction step increase significantly with increasing ionic strength, which is in contraction to the theoretical expectation. The coordinated imidazole proton signals are unaffected by ionic strength. However, the methyl and propionate proton signals of hemes 1 and 4 showed significant ionic strength dependencies that are distinct from those for hemes 2 and 3. This heme classification is the same as that found in the ionic strength dependencies of the microscopic redox potentials at the fourth reduction step. Furthermore, the effect of ionic strength on the electrostatic potentials at the heme irons has been examined on the theoretical basis. The electrostatic potential at heme 4 changes up to 1 M ionic strength, which was not expected from the observations reported on cytochromes so far. These results are discussed in connection with the reported anomalous ionic strength dependency of the reduction rate of cytochrome c3.
Full Text
The Full Text of this article is available as a PDF (101.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akutsu H., Hazzard J. H., Bartsch R. G., Cusanovich M. A. Reduction kinetics of the four hemes of cytochrome c3 from Desulfovibrio vulgaris by flash photolysis. Biochim Biophys Acta. 1992 Dec 7;1140(2):144–156. doi: 10.1016/0005-2728(92)90003-k. [DOI] [PubMed] [Google Scholar]
- Akutsu H., Hirasawa M. Non-equivalent natures of the coordinated imidazole rings of cytochrome c3 from D. vulgaris Miyazaki F as studied by 1H NMR. FEBS Lett. 1992 Aug 24;308(3):264–266. doi: 10.1016/0014-5793(92)81289-x. [DOI] [PubMed] [Google Scholar]
- Benosman H., Asso M., Bertrand P., Yagi T., Gayda J. P. EPR study of the redox interactions in cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Eur J Biochem. 1989 Jun 1;182(1):51–55. doi: 10.1111/j.1432-1033.1989.tb14799.x. [DOI] [PubMed] [Google Scholar]
- Caffrey M. S., Cusanovich M. A. The effects of surface charges on the redox potential of cytochrome c2 from the purple phototrophic bacterium Rhodobacter capsulatus. Arch Biochem Biophys. 1991 Mar;285(2):227–230. doi: 10.1016/0003-9861(91)90353-k. [DOI] [PubMed] [Google Scholar]
- Catarino T., Coletta M., LeGall J., Xavier A. V. Kinetic study of the reduction mechanism for Desulfovibrio gigas cytochrome c3. Eur J Biochem. 1991 Dec 18;202(3):1107–1113. doi: 10.1111/j.1432-1033.1991.tb16477.x. [DOI] [PubMed] [Google Scholar]
- Coletta M., Catarino T., LeGall J., Xavier A. V. A thermodynamic model for the cooperative functional properties of the tetraheme cytochrome c3 from Desulfovibrio gigas. Eur J Biochem. 1991 Dec 18;202(3):1101–1106. doi: 10.1111/j.1432-1033.1991.tb16476.x. [DOI] [PubMed] [Google Scholar]
- Fan K. J., Akutsu H., Kyogoku Y., Niki K. Estimation of microscopic redox potentials of a tetraheme protein, cytochrome c3 of Desulfovibrio vulgaris, Miyazaki F, and partial assignments of heme groups. Biochemistry. 1990 Mar 6;29(9):2257–2263. doi: 10.1021/bi00461a008. [DOI] [PubMed] [Google Scholar]
- Gayda J. P., Benosman H., Bertrand P., More C., Asso M. EPR determination of interaction redox potentials in a multiheme cytochrome: cytochrome c3 from Desulfovibrio desulfuricans Norway. Eur J Biochem. 1988 Oct 15;177(1):199–206. doi: 10.1111/j.1432-1033.1988.tb14362.x. [DOI] [PubMed] [Google Scholar]
- Goldkorn T., Schejter A. The redox potential of cytochrome c-552 from Euglena gracillis: a thermodynamic study. Arch Biochem Biophys. 1976 Nov;177(1):39–45. doi: 10.1016/0003-9861(76)90413-6. [DOI] [PubMed] [Google Scholar]
- Haladjian J., Bianco P., Guerlesquin F., Bruschi M. Electrochemical study of the electron exchange between cytochrome c3 and hydrogenase from Desulfovibrio desulfuricans Norway. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1289–1294. doi: 10.1016/s0006-291x(87)80210-3. [DOI] [PubMed] [Google Scholar]
- Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M. Refined structure of cytochrome c3 at 1.8 A resolution. J Mol Biol. 1984 Jan 5;172(1):109–139. doi: 10.1016/0022-2836(84)90417-0. [DOI] [PubMed] [Google Scholar]
- Margalit R., Schejter A. Cytochrome c: a thermodynamic study of the relationships among oxidation state, ion-binding and structural parameters. 1. The effects of temperature, pH and electrostatic media on the standard redox potential of cytochrome c. Eur J Biochem. 1973 Feb 1;32(3):492–499. doi: 10.1111/j.1432-1033.1973.tb02633.x. [DOI] [PubMed] [Google Scholar]
- Matias P. M., Frazão C., Morais J., Coll M., Carrondo M. A. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. J Mol Biol. 1993 Dec 5;234(3):680–699. doi: 10.1006/jmbi.1993.1620. [DOI] [PubMed] [Google Scholar]
- Matias P. M., Morais J., Coelho R., Carrondo M. A., Wilson K., Dauter Z., Sieker L. Cytochrome c3 from Desulfovibrio gigas: crystal structure at 1.8 A resolution and evidence for a specific calcium-binding site. Protein Sci. 1996 Jul;5(7):1342–1354. doi: 10.1002/pro.5560050713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morimoto Y., Tani T., Okumura H., Higuchi Y., Yasuoka N. Effects of amino acid substitution on three-dimensional structure: an X-ray analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 2 A resolution. J Biochem. 1991 Oct;110(4):532–540. doi: 10.1093/oxfordjournals.jbchem.a123615. [DOI] [PubMed] [Google Scholar]
- Nakamura H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996 Feb;29(1):1–90. doi: 10.1017/s0033583500005746. [DOI] [PubMed] [Google Scholar]
- Park J. S., Ohmura T., Kano K., Sagara T., Niki K., Kyogoku Y., Akutsu H. Regulation of the redox order of four hemes by pH in cytochrome c3 from D. vulgaris Miyazaki F. Biochim Biophys Acta. 1996 Mar 7;1293(1):45–54. doi: 10.1016/0167-4838(95)00239-1. [DOI] [PubMed] [Google Scholar]
- Pierrot M., Haser R., Frey M., Payan F., Astier J. P. Crystal structure and electron transfer properties of cytochrome c3. J Biol Chem. 1982 Dec 10;257(23):14341–14348. [PubMed] [Google Scholar]
- Santos H., Moura J. J., Moura I., LeGall J., Xavier A. V. NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3. Eur J Biochem. 1984 Jun 1;141(2):283–296. doi: 10.1111/j.1432-1033.1984.tb08190.x. [DOI] [PubMed] [Google Scholar]
- Tabushi I., Nishiya T., Yagi T., Inokuchi H. Kinetic study on the successive four-step reduction of Cyt c3. J Biochem. 1983 Nov;94(5):1375–1385. doi: 10.1093/oxfordjournals.jbchem.a134484. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Nakamura H., Wada A. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Biopolymers. 1992 Aug;32(8):897–909. doi: 10.1002/bip.360320802. [DOI] [PubMed] [Google Scholar]
- Turner D. L., Salgueiro C. A., Catarino T., LeGall J., Xavier A. V. Homotropic and heterotropic cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Biochim Biophys Acta. 1994 Aug 30;1187(2):232–235. doi: 10.1016/0005-2728(94)90117-1. [DOI] [PubMed] [Google Scholar]
- Turner D. L., Salgueiro C. A., Catarino T., Legall J., Xavier A. V. NMR studies of cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1996 Nov 1;241(3):723–731. doi: 10.1111/j.1432-1033.1996.00723.x. [DOI] [PubMed] [Google Scholar]