Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Sep;75(3):1553–1572. doi: 10.1016/S0006-3495(98)74074-3

Measuring two-dimensional receptor-ligand binding kinetics by micropipette.

S E Chesla 1, P Selvaraj 1, C Zhu 1
PMCID: PMC1299830  PMID: 9726957

Abstract

We report a novel method for measuring forward and reverse kinetic rate constants, kf0 and kr0, for the binding of individual receptors and ligands anchored to apposing surfaces in cell adhesion. Not only does the method examine adhesion between a single pair of cells; it also probes predominantly a single receptor-ligand bond. The idea is to quantify the dependence of adhesion probability on contact duration and densities of the receptors and ligands. The experiment was an extension of existing micropipette protocols. The analysis was based on analytical solutions to the probabilistic formulation of kinetics for small systems. This method was applied to examine the interaction between Fc gamma receptor IIIA (CD16A) expressed on Chinese hamster ovary cell transfectants and immunoglobulin G (IgG) of either human or rabbit origin coated on human erythrocytes, which were found to follow a monovalent biomolecular binding mechanism. The measured rate constants are Ackf0 = (2.6 +/- 0.32) x 10(-7) micron 4 s-1 and kr0 = (0.37 +/- 0.055) s-1 for the CD16A-hIgG interaction and Ackf0 = (5.7 +/- 0.31) X 10(-7) micron 4 s-1 and kr0 = (0.20 +/- 0.042) s-1 for the CD16A-rIgG interaction, respectively, where Ac is the contact area, estimated to be a few percent of 3 micron 2.

Full Text

The Full Text of this article is available as a PDF (479.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  4. Berenson R. J., Bensinger W. I., Kalamasz D. Positive selection of viable cell populations using avidin-biotin immunoadsorption. J Immunol Methods. 1986 Jul 11;91(1):11–19. doi: 10.1016/0022-1759(86)90096-7. [DOI] [PubMed] [Google Scholar]
  5. Capo C., Garrouste F., Benoliel A. M., Bongrand P., Ryter A., Bell G. I. Concanavalin-A-mediated thymocyte agglutination: a model for a quantitative study of cell adhesion. J Cell Sci. 1982 Aug;56:21–48. doi: 10.1242/jcs.56.1.21. [DOI] [PubMed] [Google Scholar]
  6. Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cozens-Roberts C., Lauffenburger D. A., Quinn J. A. Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys J. 1990 Oct;58(4):841–856. doi: 10.1016/S0006-3495(90)82430-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dustin M. L., Ferguson L. M., Chan P. Y., Springer T. A., Golan D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol. 1996 Feb;132(3):465–474. doi: 10.1083/jcb.132.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans E., Berk D., Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991 Apr;59(4):838–848. doi: 10.1016/S0006-3495(91)82296-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ghirlando R., Keown M. B., Mackay G. A., Lewis M. S., Unkeless J. C., Gould H. J. Stoichiometry and thermodynamics of the interaction between the Fc fragment of human IgG1 and its low-affinity receptor Fc gamma RIII. Biochemistry. 1995 Oct 17;34(41):13320–13327. doi: 10.1021/bi00041a007. [DOI] [PubMed] [Google Scholar]
  12. Gold E. R., Fudenberg H. H. Chromic chloride: a coupling reagent for passive hemagglutination reactions. J Immunol. 1967 Nov;99(5):859–866. [PubMed] [Google Scholar]
  13. Hasslen S. R., Burns A. R., Simon S. I., Smith C. W., Starr K., Barclay A. N., Michie S. A., Nelson R. D., Erlandsen S. L. Preservation of spatial organization and antigenicity of leukocyte surface molecules by aldehyde fixation: flow cytometry and high-resolution FESEM studies of CD62L, CD11b, and Thy-1. J Histochem Cytochem. 1996 Oct;44(10):1115–1122. doi: 10.1177/44.10.8813076. [DOI] [PubMed] [Google Scholar]
  14. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hulett M. D., Hogarth P. M. Molecular basis of Fc receptor function. Adv Immunol. 1994;57:1–127. doi: 10.1016/s0065-2776(08)60671-9. [DOI] [PubMed] [Google Scholar]
  16. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kofler R., Wick G. Some methodologic aspects of the chromium chloride method for coupling antigen to erythrocytes. J Immunol Methods. 1977;16(3):201–209. doi: 10.1016/0022-1759(77)90198-3. [DOI] [PubMed] [Google Scholar]
  18. Kwong D., Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. II. Protein-protein bond. Biophys J. 1996 Aug;71(2):1115–1122. doi: 10.1016/S0006-3495(96)79313-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  20. Leckband D. E., Schmitt F. J., Israelachvili J. N., Knoll W. Direct force measurements of specific and nonspecific protein interactions. Biochemistry. 1994 Apr 19;33(15):4611–4624. doi: 10.1021/bi00181a023. [DOI] [PubMed] [Google Scholar]
  21. Nagarajan S., Chesla S., Cobern L., Anderson P., Zhu C., Selvaraj P. Ligand binding and phagocytosis by CD16 (Fc gamma receptor III) isoforms. Phagocytic signaling by associated zeta and gamma subunits in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 27;270(43):25762–25770. doi: 10.1074/jbc.270.43.25762. [DOI] [PubMed] [Google Scholar]
  22. Pierres A., Benoliel A. M., Bongrand P. Measuring bonds between surface-associated molecules. J Immunol Methods. 1996 Sep 27;196(2):105–120. doi: 10.1016/0022-1759(96)00103-2. [DOI] [PubMed] [Google Scholar]
  23. Pierres A., Benoliel A. M., Bongrand P. Measuring the lifetime of bonds made between surface-linked molecules. J Biol Chem. 1995 Nov 3;270(44):26586–26592. doi: 10.1074/jbc.270.44.26586. [DOI] [PubMed] [Google Scholar]
  24. Piper J. W., Swerlick R. A., Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J. 1998 Jan;74(1):492–513. doi: 10.1016/S0006-3495(98)77807-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature. 1988 Jun 9;333(6173):565–567. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  26. Sung K. L., Sung L. A., Crimmins M., Burakoff S. J., Chien S. Determination of junction avidity of cytolytic T cell and target cell. Science. 1986 Dec 12;234(4782):1405–1408. doi: 10.1126/science.3491426. [DOI] [PubMed] [Google Scholar]
  27. Tees D. F., Coenen O., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Biophys J. 1993 Sep;65(3):1318–1334. doi: 10.1016/S0006-3495(93)81180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys J. 1996 Aug;71(2):1102–1114. doi: 10.1016/S0006-3495(96)79312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  30. van de Winkel J. G., Capel P. J. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today. 1993 May;14(5):215–221. doi: 10.1016/0167-5699(93)90166-I. [DOI] [PubMed] [Google Scholar]
  31. von Andrian U. H., Chambers J. D., McEvoy L. M., Bargatze R. F., Arfors K. E., Butcher E. C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES