Abstract
In small cell-attached patches containing one and only one Na+ channel, inactivation was studied in three different gating modes, namely, the fast-inactivating F mode and the more slowly inactivating S mode and P mode with similar inactivation kinetics. In each of these modes, ensemble-averaged currents could be fitted with a Hodgkin-Huxley-type model with a single exponential for inactivation (tauh). tauh declined from 1.0 ms at -60 mV to 0.1 ms at 0 mV in the F mode, from 4.6 ms at -40 mV to 1.1 ms at 0 mV in the S mode, and from 4.5 ms at -40 mV to 0.8 ms at +20 mV in the P mode, respectively. The probability of non-empty traces (net), the mean number of openings per non-empty trace (op/tr), and the mean open probability per trace (popen) were evaluated at 4-ms test pulses. net inclined from 30% at -60 mV to 63% at 0 mV in the F mode, from 4% at -90 mV to 90% at 0 mV in the S mode, and from 2% at -60 mV to 79% at +20 mV in the P mode. op/tr declined from 1.4 at -60 mV to 1.1 at 0 mV in the F mode, from 4.0 at -60 mV to 1.2 at 0 mV in the S mode, and from 2.9 at -40 mV to 1.6 at +20 mV in the P mode. popen was bell-shaped with a maximum of 5% at -30 mV in the F mode, 48% at -50 mV in the S mode, and 16% at 0 mV in the P mode. It is concluded that 1) a switch between F and S modes may reflect a functional change of inactivation, 2) a switch between S and P modes may reflect a functional change of activation, 3) tauh is mainly determined by the latency until the first channel opening in the F mode and by the number of reopenings in the S and P modes, 4) at least in the S and P modes, inactivation is independent of pore opening, and 5) in the S mode, mainly open channels inactivate, and in the P mode, mainly closed channels inactivate.
Full Text
The Full Text of this article is available as a PDF (127.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
- Barchi R. L. Molecular pathology of the skeletal muscle sodium channel. Annu Rev Physiol. 1995;57:355–385. doi: 10.1146/annurev.ph.57.030195.002035. [DOI] [PubMed] [Google Scholar]
- Benndorf K. Multiple levels of native cardiac Na+ channels at elevated temperature measured with high-bandwidth/low-noise patch clamp. Pflugers Arch. 1993 Feb;422(5):506–515. doi: 10.1007/BF00375079. [DOI] [PubMed] [Google Scholar]
- Bennett P. B., Yazawa K., Makita N., George A. L., Jr Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995 Aug 24;376(6542):683–685. doi: 10.1038/376683a0. [DOI] [PubMed] [Google Scholar]
- Böhle T., Benndorf K. Facilitated giga-seal formation with a just originated glass surface. Pflugers Arch. 1994 Jul;427(5-6):487–491. doi: 10.1007/BF00374265. [DOI] [PubMed] [Google Scholar]
- Böhle T., Benndorf K. Multimodal action of single Na+ channels in myocardial mouse cells. Biophys J. 1995 Jan;68(1):121–130. doi: 10.1016/S0006-3495(95)80166-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhle T., Benndorf K. Voltage-dependent properties of three different gating modes in single cardiac Na+ channels. Biophys J. 1995 Sep;69(3):873–882. doi: 10.1016/S0006-3495(95)79961-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannon S. C. Slow inactivation of sodium channels: more than just a laboratory curiosity. Biophys J. 1996 Jul;71(1):5–7. doi: 10.1016/S0006-3495(96)79203-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carmeliet E. Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflugers Arch. 1987 Jan;408(1):18–26. doi: 10.1007/BF00581835. [DOI] [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coraboeuf E., Deroubaix E., Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol. 1979 Apr;236(4):H561–H567. doi: 10.1152/ajpheart.1979.236.4.H561. [DOI] [PubMed] [Google Scholar]
- Correa A. M., Bezanilla F. Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states. Biophys J. 1994 Jun;66(6):1864–1878. doi: 10.1016/S0006-3495(94)80980-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins T. R., Zhou J., Sigworth F. J., Ukomadu C., Stephan M., Ptácek L. J., Agnew W. S. Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron. 1993 Apr;10(4):667–678. doi: 10.1016/0896-6273(93)90168-q. [DOI] [PubMed] [Google Scholar]
- Doepner B., Thierfelder S., Hirche H., Benndorf K. 3-hydroxybutyrate blocks the transient K+ outward current in myocardial mouse cells in a stereoselective fashion. J Physiol. 1997 Apr 1;500(Pt 1):85–94. doi: 10.1113/jphysiol.1997.sp022001. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilly W. F., Armstrong C. M. Threshold channels--a novel type of sodium channel in squid giant axon. 1984 May 31-Jun 6Nature. 309(5967):448–450. doi: 10.1038/309448a0. [DOI] [PubMed] [Google Scholar]
- Grant A. O., Starmer C. F. Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis. Circ Res. 1987 Jun;60(6):897–913. doi: 10.1161/01.res.60.6.897. [DOI] [PubMed] [Google Scholar]
- Keynes R. D. Bimodal gating of the Na+ channel. Trends Neurosci. 1994 Feb;17(2):58–61. doi: 10.1016/0166-2236(94)90075-2. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Meves H. Properties of the voltage sensor for the opening and closing of the sodium channels in the squid giant axon. Proc Biol Sci. 1993 Jul 22;253(1336):61–68. doi: 10.1098/rspb.1993.0082. [DOI] [PubMed] [Google Scholar]
- Kohlhardt M., Fröbe U., Herzig J. W. Properties of normal and non-inactivating single cardiac Na+ channels. Proc R Soc Lond B Biol Sci. 1987 Oct 22;232(1266):71–93. doi: 10.1098/rspb.1987.0062. [DOI] [PubMed] [Google Scholar]
- Liu Y. M., DeFelice L. J., Mazzanti M. Na channels that remain open throughout the cardiac action potential plateau. Biophys J. 1992 Sep;63(3):654–662. doi: 10.1016/S0006-3495(92)81635-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazzanti M., DeFelice L. J. Na channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys J. 1987 Jul;52(1):95–100. doi: 10.1016/S0006-3495(87)83192-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitsuiye T., Noma A. Inactivation of the cardiac Na+ channels in guinea-pig ventricular cells through the open state. J Physiol. 1995 Jun 15;485(Pt 3):581–594. doi: 10.1113/jphysiol.1995.sp020754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilius B., Vereecke J., Carmeliet E. Properties of the bursting Na channel in the presence of DPI 201-106 in guinea-pig ventricular myocytes. Pflugers Arch. 1989 Jan;413(3):234–241. doi: 10.1007/BF00583535. [DOI] [PubMed] [Google Scholar]
- Patlak J. B., Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol. 1985 Jul;86(1):89–104. doi: 10.1085/jgp.86.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patlak J. B. Sodium channel subconductance levels measured with a new variance-mean analysis. J Gen Physiol. 1988 Oct;92(4):413–430. doi: 10.1085/jgp.92.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saint D. A., Ju Y. K., Gage P. W. A persistent sodium current in rat ventricular myocytes. J Physiol. 1992;453:219–231. doi: 10.1113/jphysiol.1992.sp019225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan M., Agnew W. S. Voltage-sensitive Na+ channels: motifs, modes and modulation. Curr Opin Cell Biol. 1991 Aug;3(4):676–684. doi: 10.1016/0955-0674(91)90041-v. [DOI] [PubMed] [Google Scholar]
- Yue D. T., Lawrence J. H., Marban E. Two molecular transitions influence cardiac sodium channel gating. Science. 1989 Apr 21;244(4902):349–352. doi: 10.1126/science.2540529. [DOI] [PubMed] [Google Scholar]
- Zilberter Y. I., Motin L. G. Existence of two fast inactivation states in cardiac Na channels confirmed by two-stage action of proteolytic enzymes. Biochim Biophys Acta. 1991 Sep 10;1068(1):77–80. doi: 10.1016/0005-2736(91)90063-e. [DOI] [PubMed] [Google Scholar]