Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1740–1748. doi: 10.1016/S0006-3495(98)77615-5

Inactivation of single cardiac Na+ channels in three different gating modes.

T Böhle 1, M Steinbis 1, C Biskup 1, R Koopmann 1, K Benndorf 1
PMCID: PMC1299845  PMID: 9746515

Abstract

In small cell-attached patches containing one and only one Na+ channel, inactivation was studied in three different gating modes, namely, the fast-inactivating F mode and the more slowly inactivating S mode and P mode with similar inactivation kinetics. In each of these modes, ensemble-averaged currents could be fitted with a Hodgkin-Huxley-type model with a single exponential for inactivation (tauh). tauh declined from 1.0 ms at -60 mV to 0.1 ms at 0 mV in the F mode, from 4.6 ms at -40 mV to 1.1 ms at 0 mV in the S mode, and from 4.5 ms at -40 mV to 0.8 ms at +20 mV in the P mode, respectively. The probability of non-empty traces (net), the mean number of openings per non-empty trace (op/tr), and the mean open probability per trace (popen) were evaluated at 4-ms test pulses. net inclined from 30% at -60 mV to 63% at 0 mV in the F mode, from 4% at -90 mV to 90% at 0 mV in the S mode, and from 2% at -60 mV to 79% at +20 mV in the P mode. op/tr declined from 1.4 at -60 mV to 1.1 at 0 mV in the F mode, from 4.0 at -60 mV to 1.2 at 0 mV in the S mode, and from 2.9 at -40 mV to 1.6 at +20 mV in the P mode. popen was bell-shaped with a maximum of 5% at -30 mV in the F mode, 48% at -50 mV in the S mode, and 16% at 0 mV in the P mode. It is concluded that 1) a switch between F and S modes may reflect a functional change of inactivation, 2) a switch between S and P modes may reflect a functional change of activation, 3) tauh is mainly determined by the latency until the first channel opening in the F mode and by the number of reopenings in the S and P modes, 4) at least in the S and P modes, inactivation is independent of pore opening, and 5) in the S mode, mainly open channels inactivate, and in the P mode, mainly closed channels inactivate.

Full Text

The Full Text of this article is available as a PDF (127.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
  2. Barchi R. L. Molecular pathology of the skeletal muscle sodium channel. Annu Rev Physiol. 1995;57:355–385. doi: 10.1146/annurev.ph.57.030195.002035. [DOI] [PubMed] [Google Scholar]
  3. Benndorf K. Multiple levels of native cardiac Na+ channels at elevated temperature measured with high-bandwidth/low-noise patch clamp. Pflugers Arch. 1993 Feb;422(5):506–515. doi: 10.1007/BF00375079. [DOI] [PubMed] [Google Scholar]
  4. Bennett P. B., Yazawa K., Makita N., George A. L., Jr Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995 Aug 24;376(6542):683–685. doi: 10.1038/376683a0. [DOI] [PubMed] [Google Scholar]
  5. Böhle T., Benndorf K. Facilitated giga-seal formation with a just originated glass surface. Pflugers Arch. 1994 Jul;427(5-6):487–491. doi: 10.1007/BF00374265. [DOI] [PubMed] [Google Scholar]
  6. Böhle T., Benndorf K. Multimodal action of single Na+ channels in myocardial mouse cells. Biophys J. 1995 Jan;68(1):121–130. doi: 10.1016/S0006-3495(95)80166-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böhle T., Benndorf K. Voltage-dependent properties of three different gating modes in single cardiac Na+ channels. Biophys J. 1995 Sep;69(3):873–882. doi: 10.1016/S0006-3495(95)79961-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cannon S. C. Slow inactivation of sodium channels: more than just a laboratory curiosity. Biophys J. 1996 Jul;71(1):5–7. doi: 10.1016/S0006-3495(96)79203-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carmeliet E. Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflugers Arch. 1987 Jan;408(1):18–26. doi: 10.1007/BF00581835. [DOI] [PubMed] [Google Scholar]
  10. Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coraboeuf E., Deroubaix E., Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol. 1979 Apr;236(4):H561–H567. doi: 10.1152/ajpheart.1979.236.4.H561. [DOI] [PubMed] [Google Scholar]
  12. Correa A. M., Bezanilla F. Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states. Biophys J. 1994 Jun;66(6):1864–1878. doi: 10.1016/S0006-3495(94)80980-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cummins T. R., Zhou J., Sigworth F. J., Ukomadu C., Stephan M., Ptácek L. J., Agnew W. S. Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron. 1993 Apr;10(4):667–678. doi: 10.1016/0896-6273(93)90168-q. [DOI] [PubMed] [Google Scholar]
  15. Doepner B., Thierfelder S., Hirche H., Benndorf K. 3-hydroxybutyrate blocks the transient K+ outward current in myocardial mouse cells in a stereoselective fashion. J Physiol. 1997 Apr 1;500(Pt 1):85–94. doi: 10.1113/jphysiol.1997.sp022001. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  16. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilly W. F., Armstrong C. M. Threshold channels--a novel type of sodium channel in squid giant axon. 1984 May 31-Jun 6Nature. 309(5967):448–450. doi: 10.1038/309448a0. [DOI] [PubMed] [Google Scholar]
  18. Grant A. O., Starmer C. F. Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis. Circ Res. 1987 Jun;60(6):897–913. doi: 10.1161/01.res.60.6.897. [DOI] [PubMed] [Google Scholar]
  19. Keynes R. D. Bimodal gating of the Na+ channel. Trends Neurosci. 1994 Feb;17(2):58–61. doi: 10.1016/0166-2236(94)90075-2. [DOI] [PubMed] [Google Scholar]
  20. Keynes R. D., Meves H. Properties of the voltage sensor for the opening and closing of the sodium channels in the squid giant axon. Proc Biol Sci. 1993 Jul 22;253(1336):61–68. doi: 10.1098/rspb.1993.0082. [DOI] [PubMed] [Google Scholar]
  21. Kohlhardt M., Fröbe U., Herzig J. W. Properties of normal and non-inactivating single cardiac Na+ channels. Proc R Soc Lond B Biol Sci. 1987 Oct 22;232(1266):71–93. doi: 10.1098/rspb.1987.0062. [DOI] [PubMed] [Google Scholar]
  22. Liu Y. M., DeFelice L. J., Mazzanti M. Na channels that remain open throughout the cardiac action potential plateau. Biophys J. 1992 Sep;63(3):654–662. doi: 10.1016/S0006-3495(92)81635-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mazzanti M., DeFelice L. J. Na channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys J. 1987 Jul;52(1):95–100. doi: 10.1016/S0006-3495(87)83192-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mitsuiye T., Noma A. Inactivation of the cardiac Na+ channels in guinea-pig ventricular cells through the open state. J Physiol. 1995 Jun 15;485(Pt 3):581–594. doi: 10.1113/jphysiol.1995.sp020754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nilius B., Vereecke J., Carmeliet E. Properties of the bursting Na channel in the presence of DPI 201-106 in guinea-pig ventricular myocytes. Pflugers Arch. 1989 Jan;413(3):234–241. doi: 10.1007/BF00583535. [DOI] [PubMed] [Google Scholar]
  26. Patlak J. B., Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol. 1985 Jul;86(1):89–104. doi: 10.1085/jgp.86.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Patlak J. B. Sodium channel subconductance levels measured with a new variance-mean analysis. J Gen Physiol. 1988 Oct;92(4):413–430. doi: 10.1085/jgp.92.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saint D. A., Ju Y. K., Gage P. W. A persistent sodium current in rat ventricular myocytes. J Physiol. 1992;453:219–231. doi: 10.1113/jphysiol.1992.sp019225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stephan M., Agnew W. S. Voltage-sensitive Na+ channels: motifs, modes and modulation. Curr Opin Cell Biol. 1991 Aug;3(4):676–684. doi: 10.1016/0955-0674(91)90041-v. [DOI] [PubMed] [Google Scholar]
  30. Yue D. T., Lawrence J. H., Marban E. Two molecular transitions influence cardiac sodium channel gating. Science. 1989 Apr 21;244(4902):349–352. doi: 10.1126/science.2540529. [DOI] [PubMed] [Google Scholar]
  31. Zilberter Y. I., Motin L. G. Existence of two fast inactivation states in cardiac Na channels confirmed by two-stage action of proteolytic enzymes. Biochim Biophys Acta. 1991 Sep 10;1068(1):77–80. doi: 10.1016/0005-2736(91)90063-e. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES