Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1749–1758. doi: 10.1016/S0006-3495(98)77616-7

Evidence for dimer participation and evidence against channel mechanism in A23187-mediated monovalent metal ion transport across phospholipid vesicular membrane.

B S Prabhananda 1, M H Kombrabail 1
PMCID: PMC1299846  PMID: 9746516

Abstract

The decay of the pH difference (DeltapH) across soybean phospholipid vesicular membrane by ionophore A23187 (CAL)-mediated H+/M+ exchange (M+ = Li+, Na+, K+, and Cs+) has been studied in the pH range 6-7.6. The DeltapH in these experiments were created by temperature jump. The observed dependence of DeltapH relaxation rate 1/tau on the concentration of CAL, pH, and the choice of M+ in vesicle solutions lead to the following conclusions. 1) The concentrations of dimers and other oligomers of A23187 in the membrane are small compared to the total concentration of A23187 in the membrane, similar to that in chloroform solutions reported in the literature. 2) In the H+ transport cycle leading to DeltapH decay, the A23187-mediated H+ translocation across the membrane is a fast step, and the rate-limiting step is the A23187-mediated M+ translocation. 3) Even though the monomeric Cal-H is the dominant species translocating H+, Cal-M is not the dominant species translocating M+ (even at concentrations higher than [Cal-H]), presumably because its dissociation rate is much higher than its translocation rate. 4) The pH dependence of 1/tau shows that the dimeric species Cal2LiLi, Cal2NaNa, Cal2KH, and Cal2CsH are the dominant species translocating M+. The rate constant associated with their translocation has been estimated to be approximately 5 x 10(3) s-1. With this magnitude for the rate constants, the dimer dissociation constants of these species in the membrane have been estimated to be approximately 4, 1, 0.05, and 0.04 M, respectively. 5) Contrary to the claims made in the literature, the data obtained in the DeltapH decay studies do not favor the channel mechanism for the ion transport in this system. 6) However, they support the hypothesis that the dissociation of the divalent metal ion-A23187 complex is the rate limiting step of A23187-mediated divalent metal ion transport.

Full Text

The Full Text of this article is available as a PDF (117.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian S. V., Sikdar S. K., Easwaran K. R. Bilayers containing calcium ionophore A23187 form channels. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1038–1042. doi: 10.1016/0006-291x(92)92308-k. [DOI] [PubMed] [Google Scholar]
  2. Ben-Hayyim G., Krause G. H. Transport of mono- and divalent cations across chloroplast membranes mediated by the lonophore A23187. Arch Biochem Biophys. 1980 Jul;202(2):546–557. doi: 10.1016/0003-9861(80)90461-0. [DOI] [PubMed] [Google Scholar]
  3. Deber C. M., Pfieffer D. R. Ionophore A23187. Solution conformations of the calcium complex and free acid deduced from proton and carbon-13 nuclear magnetic resonance studies. Biochemistry. 1976 Jan 13;15(1):132–141. doi: 10.1021/bi00646a020. [DOI] [PubMed] [Google Scholar]
  4. Garlid K. D., DiResta D. J., Beavis A. D., Martin W. H. On the mechanism by which dicyclohexylcarbodiimide and quinine inhibit K+ transport in rat liver mitochondria. J Biol Chem. 1986 Feb 5;261(4):1529–1535. [PubMed] [Google Scholar]
  5. Henderson P. J., McGivan J. D., Chappell J. B. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J. 1969 Feb;111(4):521–535. doi: 10.1042/bj1110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kauffman R. F., Taylor R. W., Pfeiffer D. R. Acid-base properties of ionophore A23187 in methanol-water solutions and bound to unilamellar vesicles of dimyristoylphosphatidylcholine. Biochemistry. 1982 May 11;21(10):2426–2435. doi: 10.1021/bi00539a023. [DOI] [PubMed] [Google Scholar]
  7. Kolber M. A., Haynes D. H. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes. Biophys J. 1981 Nov;36(2):369–391. doi: 10.1016/S0006-3495(81)84738-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krishnamoorthy G. Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes. Biochemistry. 1986 Oct 21;25(21):6666–6671. doi: 10.1021/bi00369a051. [DOI] [PubMed] [Google Scholar]
  9. Nakashima R. A., Garlid K. D. Quinine inhibition of Na+ and K+ transport provides evidence for two cation/H+ exchangers in rat liver mitochondria. J Biol Chem. 1982 Aug 25;257(16):9252–9254. [PubMed] [Google Scholar]
  10. Ortiz-Carranza O., Miller M. E., Adragna N. C., Lauf P. K. Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions. J Membr Biol. 1997 Apr 1;156(3):287–295. doi: 10.1007/s002329900208. [DOI] [PubMed] [Google Scholar]
  11. Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry. 1976 Mar 9;15(5):935–943. doi: 10.1021/bi00650a001. [DOI] [PubMed] [Google Scholar]
  12. Pfeiffer D. R., Reed P. W., Lardy H. A. Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187 and its metal ion complexes. Biochemistry. 1974 Sep 10;13(19):4007–4014. doi: 10.1021/bi00716a029. [DOI] [PubMed] [Google Scholar]
  13. Prabhananda B. S., Kombrabail M. H. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies. Biochim Biophys Acta. 1995 May 4;1235(2):323–335. doi: 10.1016/0005-2736(95)80021-7. [DOI] [PubMed] [Google Scholar]
  14. Prabhananda B. S., Kombrabail M. H. Monensin-mediated transports of H+, Na+, K+ and Li+ ions across vesicular membranes: T-jump studies. Biochim Biophys Acta. 1992 Apr 29;1106(1):171–177. doi: 10.1016/0005-2736(92)90236-f. [DOI] [PubMed] [Google Scholar]
  15. Prabhananda B. S., Kombrabail M. H. Two mechanisms of H+/OH- transport across phospholipid vesicular membrane facilitated by gramicidin A. Biophys J. 1996 Dec;71(6):3091–3097. doi: 10.1016/S0006-3495(96)79503-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prabhananda B. S., Ugrankar M. M. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies. Biochim Biophys Acta. 1991 Dec 9;1070(2):481–491. doi: 10.1016/0005-2736(91)90090-u. [DOI] [PubMed] [Google Scholar]
  17. Prudhomme M., Dauphin G., Jeminet G. Semi-synthesis of A23187 (calcimycin) analogs. III. Modification of benzoxazole ring substituents, ionophorous properties in an organic phase. J Antibiot (Tokyo) 1986 Jul;39(7):922–933. doi: 10.7164/antibiotics.39.922. [DOI] [PubMed] [Google Scholar]
  18. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  19. Taylor R. W., Chapman C. J., Pfeiffer D. R. Effect of membrane association on the stability of complexes between ionophore A23187 and monovalent cations. Biochemistry. 1985 Aug 27;24(18):4852–4859. doi: 10.1021/bi00339a019. [DOI] [PubMed] [Google Scholar]
  20. Thomas T. P., Wang E., Pfeiffer D. R., Taylor R. W. Evidence against formation of A23187 dimers and oligomers in solution: photo-induced degradation of Ionophore A23187. Arch Biochem Biophys. 1997 Jun 15;342(2):351–361. doi: 10.1006/abbi.1997.0121. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES