Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1759–1766. doi: 10.1016/S0006-3495(98)77617-9

Chloride channel blockers inhibit Ca2+ uptake by the smooth muscle sarcoplasmic reticulum.

N S Pollock 1, M E Kargacin 1, G J Kargacin 1
PMCID: PMC1299847  PMID: 9746517

Abstract

Despite the fact that Ca2+ transport into the sarcoplasmic reticulum (SR) of muscle cells is electrogenic, a potential difference is not maintained across the SR membrane. To achieve electroneutrality, compensatory charge movement must occur during Ca2+ uptake. To examine the role of Cl- in this charge movement in smooth muscle cells, Ca2+ transport into the SR of saponin-permeabilized smooth muscle cells was measured in the presence of various Cl- channel blockers or when I-, Br-, or SO42- was substituted for Cl-. Calcium uptake was inhibited in a dose-dependent manner by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and by indanyloxyacetic acid 94 (R(+)-IAA-94), but not by niflumic acid or 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Smooth muscle SR Ca2+ uptake was also partially inhibited by the substitution of SO42- for Cl-, but not when Cl- was replaced by I- or Br-. Neither NPPB nor R(+)-IAA-94 inhibited Ca2+ uptake into cardiac muscle SR vesicles at concentrations that maximally inhibited uptake in smooth muscle cells. These results indicate that Cl- movement is important for charge compensation in smooth muscle cells and that the Cl- channel or channels involved are different in smooth and cardiac muscle cells.

Full Text

The Full Text of this article is available as a PDF (94.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beeler T. J. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Oct 10;255(19):9156–9161. [PubMed] [Google Scholar]
  2. Chamberlain B. K., Levitsky D. O., Fleischer S. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. J Biol Chem. 1983 May 25;258(10):6602–6609. [PubMed] [Google Scholar]
  3. Chiesi M., Inesi G. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles. Biochemistry. 1980 Jun 24;19(13):2912–2918. doi: 10.1021/bi00554a015. [DOI] [PubMed] [Google Scholar]
  4. Clark A. G., Murray D., Ashley R. H. Single-channel properties of a rat brain endoplasmic reticulum anion channel. Biophys J. 1997 Jul;73(1):168–178. doi: 10.1016/S0006-3495(97)78057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fink R. H., Stephenson D. G. Ca2+-movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 1987 Aug;409(4-5):374–380. doi: 10.1007/BF00583791. [DOI] [PubMed] [Google Scholar]
  7. Garcia A. M., Miller C. Channel-mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles. J Gen Physiol. 1984 Jun;83(6):819–839. doi: 10.1085/jgp.83.6.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hartung K., Froehlich J. P., Fendler K. Time-resolved charge translocation by the Ca-ATPase from sarcoplasmic reticulum after an ATP concentration jump. Biophys J. 1997 Jun;72(6):2503–2514. doi: 10.1016/S0006-3495(97)78895-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inesi G., Hill T. L. Calcium and proton dependence of sarcoplasmic reticulum ATPase. Biophys J. 1983 Nov;44(2):271–280. doi: 10.1016/S0006-3495(83)84299-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kargacin G. J., Fay F. S. Physiological and structural properties of saponin-skinned single smooth muscle cells. J Gen Physiol. 1987 Jul;90(1):49–73. doi: 10.1085/jgp.90.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kargacin M. E., Kargacin G. J. Direct measurement of Ca2+ uptake and release by the sarcoplasmic reticulum of saponin permeabilized isolated smooth muscle cells. J Gen Physiol. 1995 Sep;106(3):467–484. doi: 10.1085/jgp.106.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kargacin M. E., Kargacin G. J. Methods for determining cardiac sarcoplasmic reticulum Ca2+ pump kinetics from fura 2 measurements. Am J Physiol. 1994 Oct;267(4 Pt 1):C1145–C1151. doi: 10.1152/ajpcell.1994.267.4.C1145. [DOI] [PubMed] [Google Scholar]
  14. Kargacin M. E., Scheid C. R., Honeyman T. W. Continuous monitoring of Ca2+ uptake in membrane vesicles with fura-2. Am J Physiol. 1988 Nov;255(5 Pt 1):C694–C698. doi: 10.1152/ajpcell.1988.255.5.C694. [DOI] [PubMed] [Google Scholar]
  15. Kourie J. I., Laver D. R., Ahern G. P., Dulhunty A. F. A calcium-activated chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Am J Physiol. 1996 Jun;270(6 Pt 1):C1675–C1686. doi: 10.1152/ajpcell.1996.270.6.C1675. [DOI] [PubMed] [Google Scholar]
  16. Kourie J. I., Laver D. R., Junankar P. R., Gage P. W., Dulhunty A. F. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J. 1996 Jan;70(1):202–221. doi: 10.1016/S0006-3495(96)79564-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Landry D. W., Akabas M. H., Redhead C., Edelman A., Cragoe E. J., Jr, Al-Awqati Q. Purification and reconstitution of chloride channels from kidney and trachea. Science. 1989 Jun 23;244(4911):1469–1472. doi: 10.1126/science.2472007. [DOI] [PubMed] [Google Scholar]
  18. Levy D., Seigneuret M., Bluzat A., Rigaud J. L. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem. 1990 Nov 15;265(32):19524–19534. [PubMed] [Google Scholar]
  19. Lukacs G. L., Nanda A., Rotstein O. D., Grinstein S. The chloride channel blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) uncouples mitochondria and increases the proton permeability of the plasma membrane in phagocytic cells. FEBS Lett. 1991 Aug 19;288(1-2):17–20. doi: 10.1016/0014-5793(91)80992-c. [DOI] [PubMed] [Google Scholar]
  20. Meissner G., McKinley D. Permeability of canine cardiac sarcoplasmic reticulum vesicles to K+, Na+, H+, and Cl-. J Biol Chem. 1982 Jul 10;257(13):7704–7711. [PubMed] [Google Scholar]
  21. Morimoto T., Kasai M. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase vesicles lacking ion channels and demonstration of electrogenicity of Ca2+-pump. J Biochem. 1986 Apr;99(4):1071–1080. doi: 10.1093/oxfordjournals.jbchem.a135571. [DOI] [PubMed] [Google Scholar]
  22. Redhead C. R., Edelman A. E., Brown D., Landry D. W., al-Awqati Q. A ubiquitous 64-kDa protein is a component of a chloride channel of plasma and intracellular membranes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3716–3720. doi: 10.1073/pnas.89.9.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reeves W. B., Gurich R. W. Calcium-dependent chloride channels in endosomes from rabbit kidney cortex. Am J Physiol. 1994 Mar;266(3 Pt 1):C741–C750. doi: 10.1152/ajpcell.1994.266.3.C741. [DOI] [PubMed] [Google Scholar]
  24. Russell J. T., Beeler T., Martonosi A. Optical probe responses on sarcoplasmic reticulum. Merocyanine and oxonol dyes. J Biol Chem. 1979 Mar 25;254(6):2047–2052. [PubMed] [Google Scholar]
  25. Russell J. T., Beeler T., Martonosi A. Optical probe responses on sarcoplasmic reticulum. Oxacarbocyanines. J Biol Chem. 1979 Mar 25;254(6):2040–2046. [PubMed] [Google Scholar]
  26. Schatzmann H. J. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol. 1989;51:473–485. doi: 10.1146/annurev.ph.51.030189.002353. [DOI] [PubMed] [Google Scholar]
  27. Shannon T. R., Bers D. M. Assessment of intra-SR free [Ca] and buffering in rat heart. Biophys J. 1997 Sep;73(3):1524–1531. doi: 10.1016/S0006-3495(97)78184-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  29. Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sorota S. Pharmacologic properties of the swelling-induced chloride current of dog atrial myocytes. J Cardiovasc Electrophysiol. 1994 Dec;5(12):1006–1016. doi: 10.1111/j.1540-8167.1994.tb01143.x. [DOI] [PubMed] [Google Scholar]
  31. Takenaka T., Kanno Y., Kitamura Y., Hayashi K., Suzuki H., Saruta T. Role of chloride channels in afferent arteriolar constriction. Kidney Int. 1996 Sep;50(3):864–872. doi: 10.1038/ki.1996.386. [DOI] [PubMed] [Google Scholar]
  32. Toma C., Greenwood I. A., Helliwell R. M., Large W. A. Activation of potassium currents by inhibitors of calcium-activated chloride conductance in rabbit portal vein smooth muscle cells. Br J Pharmacol. 1996 Jun;118(3):513–520. doi: 10.1111/j.1476-5381.1996.tb15432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Townsend C., Rosenberg R. L. Characterization of a chloride channel reconstituted from cardiac sarcoplasmic reticulum. J Membr Biol. 1995 Sep;147(2):121–136. doi: 10.1007/BF00233541. [DOI] [PubMed] [Google Scholar]
  34. Weber-Schürholz S., Wischmeyer E., Laurien M., Jockusch H., Schürholz T., Landry D. W., al-Awqati Q. Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle. J Biol Chem. 1993 Jan 5;268(1):547–551. [PubMed] [Google Scholar]
  35. Williams D. A., Becker P. L., Fay F. S. Regional changes in calcium underlying contraction of single smooth muscle cells. Science. 1987 Mar 27;235(4796):1644–1648. doi: 10.1126/science.3103219. [DOI] [PubMed] [Google Scholar]
  36. Yamaguchi M., Kanazawa T. Coincidence of H+ binding and Ca2+ dissociation in the sarcoplasmic reticulum Ca-ATPase during ATP hydrolysis. J Biol Chem. 1985 Apr 25;260(8):4896–4900. [PubMed] [Google Scholar]
  37. Yamaguchi M., Kanazawa T. Protonation of the sarcoplasmic reticulum Ca-ATPase during ATP hydrolysis. J Biol Chem. 1984 Aug 10;259(15):9526–9531. [PubMed] [Google Scholar]
  38. Yu X., Carroll S., Rigaud J. L., Inesi G. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J. 1993 Apr;64(4):1232–1242. doi: 10.1016/S0006-3495(93)81489-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zimniak P., Racker E. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1978 Jul 10;253(13):4631–4637. [PubMed] [Google Scholar]
  40. da Costa A. G., Madeira V. M. Proton ejection as a major feature of the Ca(2+)-pump. Biochim Biophys Acta. 1994 Jan 19;1189(2):181–188. doi: 10.1016/0005-2736(94)90064-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES