Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1869–1873. doi: 10.1016/S0006-3495(98)77627-1

Filipin-induced lesions in planar phospholipid bilayers imaged by atomic force microscopy.

N C Santos 1, E Ter-Ovanesyan 1, J A Zasadzinski 1, M Prieto 1, M A Castanho 1
PMCID: PMC1299857  PMID: 9746527

Abstract

Filipin is a macrolide polyene with antifungal activity belonging to the same family of antibiotics as amphotericin B and nystatin. Despite the spectroscopy and electron microscopy studies of its interaction with natural membranes and membrane model systems, several aspects of its biochemical action, such as the role of membrane sterols, remain to be completely understood. We have used atomic force microscopy (AFM) to study the effect of filipin on dipalmitoylphosphatidylethanolamine bilayers in the presence and absence of cholesterol. The bilayers were prepared by Langmuir-Blodgett deposition over mica and imaged under water. It was shown that filipin-induced lesions could only be found in membranes with cholesterol. In close agreement with electron microscopy results, we have reported the presence of densely packed circular protrusions in the membrane with a mean diameter of 19 nm (corrected for convolution with AFM tip) and 0.4 nm height. Larger circular protrusions (90 nm diameter and 2.5 nm height) and doughnut-shaped lesions were also detected. These results demonstrate that filipin-induced lesions in membranes previously observed by electron microscopy are not biased by artifacts resulting from sample preparation. Filipin aggregates in aqueous solution could also be imaged for the first time. These polydisperse spherical structures were observed in samples with and without cholesterol.

Full Text

The Full Text of this article is available as a PDF (169.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  2. Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986 Dec 22;864(3-4):257–304. doi: 10.1016/0304-4157(86)90002-x. [DOI] [PubMed] [Google Scholar]
  3. Castanho M. A., Brown W., Prieto M. J. Filipin and its interaction with cholesterol in aqueous media studied using static and dynamic light scattering. Biopolymers. 1994 Apr;34(4):447–456. doi: 10.1002/bip.360340402. [DOI] [PubMed] [Google Scholar]
  4. Castanho M. A., Coutinho A., Prieto M. J. Absorption and fluorescence spectra of polyene antibiotics in the presence of cholesterol. J Biol Chem. 1992 Jan 5;267(1):204–209. [PubMed] [Google Scholar]
  5. Castanho M. A., Prieto M. J. Fluorescence study of the macrolide pentaene antibiotic filipin in aqueous solution and in a model system of membranes. Eur J Biochem. 1992 Jul 1;207(1):125–134. doi: 10.1111/j.1432-1033.1992.tb17029.x. [DOI] [PubMed] [Google Scholar]
  6. Castanho M., Prieto M. Filipin fluorescence quenching by spin-labeled probes: studies in aqueous solution and in a membrane model system. Biophys J. 1995 Jul;69(1):155–168. doi: 10.1016/S0006-3495(95)79886-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elias P. M., Friend D. S., Goerke J. Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem. 1979 Sep;27(9):1247–1260. doi: 10.1177/27.9.479568. [DOI] [PubMed] [Google Scholar]
  8. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  9. Hui S. W., Viswanathan R., Zasadzinski J. A., Israelachvili J. N. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys J. 1995 Jan;68(1):171–178. doi: 10.1016/S0006-3495(95)80172-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinsky S. C., Luse S. A., van Deenen L. L. Interaction of polyene antibiotics with natural and artificial membrane systems. Fed Proc. 1966 Sep-Oct;25(5):1503–1510. [PubMed] [Google Scholar]
  11. Kitajima Y., Sekiya T., Nozawa Y. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions. Biochim Biophys Acta. 1976 Dec 2;455(2):452–465. doi: 10.1016/0005-2736(76)90317-5. [DOI] [PubMed] [Google Scholar]
  12. Milhaud J. Permeabilizing action of filipin III on model membranes through a filipin-phospholipid binding. Biochim Biophys Acta. 1992 Apr 13;1105(2):307–318. doi: 10.1016/0005-2736(92)90209-5. [DOI] [PubMed] [Google Scholar]
  13. Miller R. G. The use and abuse of filipin to localize cholesterol in membranes. Cell Biol Int Rep. 1984 Jul;8(7):519–535. doi: 10.1016/0309-1651(84)90050-x. [DOI] [PubMed] [Google Scholar]
  14. Mou J., Czajkowsky D. M., Shao Z. Gramicidin A aggregation in supported gel state phosphatidylcholine bilayers. Biochemistry. 1996 Mar 12;35(10):3222–3226. doi: 10.1021/bi9520242. [DOI] [PubMed] [Google Scholar]
  15. Mou J., Yang J., Huang C., Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry. 1994 Aug 23;33(33):9981–9985. doi: 10.1021/bi00199a022. [DOI] [PubMed] [Google Scholar]
  16. Mou J., Yang J., Shao Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol. 1995 May 5;248(3):507–512. doi: 10.1006/jmbi.1995.0238. [DOI] [PubMed] [Google Scholar]
  17. Schwartz D. K., Garnaes J., Viswanathan R., Zasadzinski J. A. Surface order and stability of langmuir-blodgett films. Science. 1992 Jul 24;257(5069):508–511. doi: 10.1126/science.257.5069.508. [DOI] [PubMed] [Google Scholar]
  18. Singh S., Turina P., Bustamante C. J., Keller D. J., Capaldi R. Topographical structure of membrane-bound Escherichia coli F1F0 ATP synthase in aqueous buffer. FEBS Lett. 1996 Nov 11;397(1):30–34. doi: 10.1016/s0014-5793(96)01127-1. [DOI] [PubMed] [Google Scholar]
  19. Tillack T. W., Kinsky S. C. A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta. 1973 Sep 27;323(1):43–54. doi: 10.1016/0005-2736(73)90430-6. [DOI] [PubMed] [Google Scholar]
  20. Vesenka J., Manne S., Giberson R., Marsh T., Henderson E. Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J. 1993 Sep;65(3):992–997. doi: 10.1016/S0006-3495(93)81171-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang J., Tamm L. K., Tillack T. W., Shao Z. New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. J Mol Biol. 1993 Jan 20;229(2):286–290. doi: 10.1006/jmbi.1993.1033. [DOI] [PubMed] [Google Scholar]
  22. Zasadzinski J. A., Helm C. A., Longo M. L., Weisenhorn A. L., Gould S. A., Hansma P. K. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys J. 1991 Mar;59(3):755–760. doi: 10.1016/S0006-3495(91)82288-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES