Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1874–1885. doi: 10.1016/S0006-3495(98)77628-3

Coupled plasmon-waveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes.

Z Salamon 1, D Huang 1, W A Cramer 1, G Tollin 1
PMCID: PMC1299858  PMID: 9746528

Abstract

The incorporation of cytochrome (cyt) b6f into a solid-supported planar egg phosphatidylcholine (PC) bilayer membrane and complex formation with plastocyanin have been studied by a variant of surface plasmon resonance called coupled plasmon-waveguide resonance (CPWR) spectroscopy, developed in our laboratory. CPWR combines greatly enhanced sensitivity and spectral resolution with direct measurement of anisotropies in refractive index and optical extinction coefficient, and can therefore probe structural properties of lipid-protein and protein-protein interactions. Cyt b6f incorporation into the membrane proceeds in two stages. The first occurs at low protein concentration and is characterized by an increase in total proteolipid mass without significant changes in the molecular order of the system, as demonstrated by shifts of the resonance position to larger incident angles without changing the refractive index anisotropy. The second stage, occurring at higher protein concentrations, results in a decrease in both the mass density and the molecular order of the system, evidenced by shifts of the resonance position to smaller incident angles and a large decrease in the membrane refractive index anisotropy. Plastocyanin can bind to such a proteolipid system in three different ways. First, the addition of plastocyanin before the second stage of b6f incorporation begins results in complex formation between the two proteins with a KD of approximately 10 microM and induces structural changes in the membrane that are similar to those occurring during the second stage of complex incorporation. The addition of larger amounts of plastocyanin under these conditions leads to nonspecific binding to the lipid phase with a KD of approximately 180 microM. Finally, the addition of plastocyanin after the completion of the second phase of b6f incorporation results in tighter binding between the two proteins (KD approximately 1 microM). Quantitation of the binding stoichiometry indicates that two plastocyanin molecules bind tightly to the dimeric form of the cyt b6f complex, assuming random insertion of the cytochrome into the bilayer. The structural basis for these results and formation of the proteolipid membrane are discussed.

Full Text

The Full Text of this article is available as a PDF (143.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boekema E. J., Boonstra A. F., Dekker J. P., Rögner M. Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomembr. 1994 Feb;26(1):17–29. doi: 10.1007/BF00763217. [DOI] [PubMed] [Google Scholar]
  2. Breyton C., Tribet C., Olive J., Dubacq J. P., Popot J. L. Dimer to monomer conversion of the cytochrome b6 f complex. Causes and consequences. J Biol Chem. 1997 Aug 29;272(35):21892–21900. doi: 10.1074/jbc.272.35.21892. [DOI] [PubMed] [Google Scholar]
  3. Breyton C., de Vitry C., Popot J. L. Membrane association of cytochrome b6f subunits. The Rieske iron-sulfur protein from Chlamydomonas reinhardtii is an extrinsic protein. J Biol Chem. 1994 Mar 11;269(10):7597–7602. [PubMed] [Google Scholar]
  4. Brown M. F. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994 Sep 6;73(1-2):159–180. doi: 10.1016/0009-3084(94)90180-5. [DOI] [PubMed] [Google Scholar]
  5. Chain R. K. Involvement of plastoquinone and lipids in electron transport reactions mediated by the cytochrome b6-f complex isolated from spinach. FEBS Lett. 1985 Jan 28;180(2):321–325. doi: 10.1016/0014-5793(85)81095-4. [DOI] [PubMed] [Google Scholar]
  6. Cramer W. A., Martinez S. E., Huang D., Tae G. S., Everly R. M., Heymann J. B., Cheng R. H., Baker T. S., Smith J. L. Structural aspects of the cytochrome b6f complex; structure of the lumen-side domain of cytochrome f. J Bioenerg Biomembr. 1994 Feb;26(1):31–47. doi: 10.1007/BF00763218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cramer W. A., Soriano G. M., Ponomarev M., Huang D., Zhang H., Martinez S. E., Smith J. L. SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):477–508. doi: 10.1146/annurev.arplant.47.1.477. [DOI] [PubMed] [Google Scholar]
  8. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  9. Grasberger B., Minton A. P., DeLisi C., Metzger H. Interaction between proteins localized in membranes. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6258–6262. doi: 10.1073/pnas.83.17.6258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guss J. M., Bartunik H. D., Freeman H. C. Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. Acta Crystallogr B. 1992 Dec 1;48(Pt 6):790–811. doi: 10.1107/s0108768192004270. [DOI] [PubMed] [Google Scholar]
  11. Hope A. B. The chloroplast cytochrome bf complex: a critical focus on function. Biochim Biophys Acta. 1993 Jun 10;1143(1):1–22. doi: 10.1016/0005-2728(93)90210-7. [DOI] [PubMed] [Google Scholar]
  12. Huang D., Everly R. M., Cheng R. H., Heymann J. B., Schägger H., Sled V., Ohnishi T., Baker T. S., Cramer W. A. Characterization of the chloroplast cytochrome b6f complex as a structural and functional dimer. Biochemistry. 1994 Apr 12;33(14):4401–4409. doi: 10.1021/bi00180a038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hui S. W., Sen A. Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5825–5829. doi: 10.1073/pnas.86.15.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  15. MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
  16. Martinez S. E., Huang D., Szczepaniak A., Cramer W. A., Smith J. L. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure. 1994 Feb 15;2(2):95–105. doi: 10.1016/s0969-2126(00)00012-5. [DOI] [PubMed] [Google Scholar]
  17. Meyer T. E., Zhao Z. G., Cusanovich M. A., Tollin G. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin. Biochemistry. 1993 May 4;32(17):4552–4559. doi: 10.1021/bi00068a010. [DOI] [PubMed] [Google Scholar]
  18. Mosser G., Breyton C., Olofsson A., Popot J. L., Rigaud J. L. Projection map of cytochrome b6 f complex at 8 A resolution. J Biol Chem. 1997 Aug 8;272(32):20263–20268. doi: 10.1074/jbc.272.32.20263. [DOI] [PubMed] [Google Scholar]
  19. Nałecz M. J., Azzi A. Functional characterization of the mitochondrial cytochrome b-c1 complex: steady-state kinetics of the monomeric and dimeric forms. Arch Biochem Biophys. 1985 Aug 1;240(2):921–931. doi: 10.1016/0003-9861(85)90101-8. [DOI] [PubMed] [Google Scholar]
  20. Pearson D. C., Jr, Gross E. L., David E. S. Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Biophys J. 1996 Jul;71(1):64–76. doi: 10.1016/S0006-3495(96)79236-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pinheiro T. J., Elöve G. A., Watts A., Roder H. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry. 1997 Oct 21;36(42):13122–13132. doi: 10.1021/bi971235z. [DOI] [PubMed] [Google Scholar]
  22. Qin L., Kostić N. M. Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry. 1993 Jun 15;32(23):6073–6080. doi: 10.1021/bi00074a019. [DOI] [PubMed] [Google Scholar]
  23. Salamon Z., Macleod H. A., Tollin G. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J. 1997 Nov;73(5):2791–2797. doi: 10.1016/S0006-3495(97)78308-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salamon Z., Macleod H. A., Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochim Biophys Acta. 1997 Sep 8;1331(2):117–129. doi: 10.1016/s0304-4157(97)00004-x. [DOI] [PubMed] [Google Scholar]
  25. Salamon Z., Macleod H. A., Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim Biophys Acta. 1997 Sep 8;1331(2):131–152. doi: 10.1016/s0304-4157(97)00003-8. [DOI] [PubMed] [Google Scholar]
  26. Salamon Z., Tollin G. Direct electrochemistry of spinach plastocyanin at a lipid bilayer-modified electrode: cyclic voltammetry as a probe of membrane-protein interactions. Arch Biochem Biophys. 1992 May 1;294(2):382–387. doi: 10.1016/0003-9861(92)90699-w. [DOI] [PubMed] [Google Scholar]
  27. Salamon Z., Tollin G. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials. J Bioenerg Biomembr. 1997 Jun;29(3):211–221. doi: 10.1023/a:1022401825287. [DOI] [PubMed] [Google Scholar]
  28. Salamon Z., Tollin G. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase. Biophys J. 1996 Aug;71(2):848–857. doi: 10.1016/S0006-3495(96)79286-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Salamon Z., Tollin G. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes. Biophys J. 1996 Aug;71(2):858–867. doi: 10.1016/S0006-3495(96)79287-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salamon Z., Wang Y., Brown M. F., Macleod H. A., Tollin G. Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry. 1994 Nov 22;33(46):13706–13711. doi: 10.1021/bi00250a022. [DOI] [PubMed] [Google Scholar]
  31. Salamon Z., Wang Y., Soulages J. L., Brown M. F., Tollin G. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys J. 1996 Jul;71(1):283–294. doi: 10.1016/S0006-3495(96)79224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmitt M. E., Trumpower B. L. Subunit 6 regulates half-of-the-sites reactivity of the dimeric cytochrome bc1 complex in Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 5;265(28):17005–17011. [PubMed] [Google Scholar]
  33. Sigfridsson K., Young S., Hansson O. Electron transfer between spinach plastocyanin mutants and photosystem 1. Eur J Biochem. 1997 May 1;245(3):805–812. doi: 10.1111/j.1432-1033.1997.00805.x. [DOI] [PubMed] [Google Scholar]
  34. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  35. Soriano G. M., Ponamarev M. V., Tae G. S., Cramer W. A. Effect of the interdomain basic region of cytochrome f on its redox reactions in vivo. Biochemistry. 1996 Nov 19;35(46):14590–14598. doi: 10.1021/bi9616211. [DOI] [PubMed] [Google Scholar]
  36. Szczepaniak A., Huang D., Keenan T. W., Cramer W. A. Electrostatic destabilization of the cytochrome b6f complex in the thylakoid membrane. EMBO J. 1991 Oct;10(10):2757–2764. doi: 10.1002/j.1460-2075.1991.tb07824.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takahashi Y., Rahire M., Breyton C., Popot J. L., Joliot P., Rochaix J. D. The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. EMBO J. 1996 Jul 15;15(14):3498–3506. [PMC free article] [PubMed] [Google Scholar]
  38. Tate M. W., Eikenberry E. F., Turner D. C., Shyamsunder E., Gruner S. M. Nonbilayer phases of membrane lipids. Chem Phys Lipids. 1991 Mar;57(2-3):147–164. doi: 10.1016/0009-3084(91)90073-k. [DOI] [PubMed] [Google Scholar]
  39. Xia D., Yu C. A., Kim H., Xia J. Z., Kachurin A. M., Zhang L., Yu L., Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science. 1997 Jul 4;277(5322):60–66. doi: 10.1126/science.277.5322.60. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES