Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1973–1979. doi: 10.1016/S0006-3495(98)77638-6

Cl- regulates the structure of the fibrin clot.

E Di Stasio 1, C Nagaswami 1, J W Weisel 1, E Di Cera 1
PMCID: PMC1299868  PMID: 9746538

Abstract

The differences between coarse and fine fibrin clots first reported by Ferry have been interpreted in terms of nonspecific ionic strength effects for nearly 50 years and have fostered the notion that fibrin polymerization is largely controlled by electrostatic forces. Here we report spectroscopic and electron microscopy studies carried out in the presence of different salts that demonstrate that this long-held interpretation needs to be modified. In fact, the differences are due entirely to the specific binding of Cl- to fibrin fibers and not to generic ionic strength or electrostatic effects. Binding of Cl- opposes the lateral aggregation of protofibrils and results in thinner fibers that are also more curved than those grown in the presence of inert anions such as F-. The effect of Cl- is pH dependent and increases at pH > 8.0, whereas fibers grown in the presence of F- remain thick over the entire pH range from 6.5 to 9.0. From the pH dependence of the Cl- effect it is suggested that the anion exerts its role by increasing the pKa of a basic group ionizing around pH 9.2. The important role of Cl- in structuring the fibrin clot also clarifies the role played by the release of fibrinopeptide B, which leads to slightly thicker fibers in the presence of Cl- but actually reduces the size of the fibers in the presence of F-. This effect becomes more evident at high, close to physiological concentrations of fibrinogen. We conclude that Cl- is a basic physiological modulator of fibrin polymerization and acts to prevent the growth of thicker, stiffer, and straighter fibers by increasing the pKa of a basic group. This discovery opens new possibilities for the design of molecules that can specifically modify the clot structure by targeting the structural domains responsible for Cl- binding to fibrin.

Full Text

The Full Text of this article is available as a PDF (241.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala Y., Di Cera E. Molecular recognition by thrombin. Role of the slow-->fast transition, site-specific ion binding energetics and thermodynamic mapping of structural components. J Mol Biol. 1994 Jan 14;235(2):733–746. doi: 10.1006/jmbi.1994.1024. [DOI] [PubMed] [Google Scholar]
  2. Binnie C. G., Lord S. T. The fibrinogen sequences that interact with thrombin. Blood. 1993 Jun 15;81(12):3186–3192. [PubMed] [Google Scholar]
  3. Blombäck B., Carlsson K., Fatah K., Hessel B., Procyk R. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation. Thromb Res. 1994 Sep 1;75(5):521–538. doi: 10.1016/0049-3848(94)90227-5. [DOI] [PubMed] [Google Scholar]
  4. Blombäck B., Hessel B., Hogg D., Therkildsen L. A two-step fibrinogen--fibrin transition in blood coagulation. Nature. 1978 Oct 12;275(5680):501–505. doi: 10.1038/275501a0. [DOI] [PubMed] [Google Scholar]
  5. Budzynski A. Z. Fibrinogen and fibrin: biochemistry and pathophysiology. Crit Rev Oncol Hematol. 1986;6(2):97–146. doi: 10.1016/s1040-8428(86)80019-1. [DOI] [PubMed] [Google Scholar]
  6. Carr M. E. Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb Haemost. 1988 Jun 16;59(3):535–539. [PubMed] [Google Scholar]
  7. Carr M. E., Jr, Gabriel D. A., McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J. 1986 Nov 1;239(3):513–516. doi: 10.1042/bj2390513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carr M. E., Jr, Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules. 1978 Jan-Feb;11(1):46–50. doi: 10.1021/ma60061a009. [DOI] [PubMed] [Google Scholar]
  9. Collins K. D. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997 Jan;72(1):65–76. doi: 10.1016/S0006-3495(97)78647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collins K. D. Sticky ions in biological systems. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5553–5557. doi: 10.1073/pnas.92.12.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Di Cera E., Dang Q. D., Ayala Y. M. Molecular mechanisms of thrombin function. Cell Mol Life Sci. 1997 Sep;53(9):701–730. doi: 10.1007/s000180050091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doolittle R. F. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53:195–229. doi: 10.1146/annurev.bi.53.070184.001211. [DOI] [PubMed] [Google Scholar]
  13. Doolittle R. F. The structure and evolution of vertebrate fibrinogen. Ann N Y Acad Sci. 1983 Jun 27;408:13–27. doi: 10.1111/j.1749-6632.1983.tb23231.x. [DOI] [PubMed] [Google Scholar]
  14. Dyr J. E., Blombäck B., Hessel B., Kornalík F. Conversion of fibrinogen to fibrin induced by preferential release of fibrinopeptide B. Biochim Biophys Acta. 1989 Jan 27;990(1):18–24. doi: 10.1016/s0304-4165(89)80006-6. [DOI] [PubMed] [Google Scholar]
  15. Ellis K. J., Morrison J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 1982;87:405–426. doi: 10.1016/s0076-6879(82)87025-0. [DOI] [PubMed] [Google Scholar]
  16. Gorkun O. V., Veklich Y. I., Medved L. V., Henschen A. H., Weisel J. W. Role of the alpha C domains of fibrin in clot formation. Biochemistry. 1994 Jun 7;33(22):6986–6997. doi: 10.1021/bi00188a031. [DOI] [PubMed] [Google Scholar]
  17. Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
  18. Hantgan R., Fowler W., Erickson H., Hermans J. Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb Haemost. 1980 Dec 19;44(3):119–124. [PubMed] [Google Scholar]
  19. Hantgan R., McDonagh J., Hermans J. Fibrin assembly. Ann N Y Acad Sci. 1983 Jun 27;408:344–366. doi: 10.1111/j.1749-6632.1983.tb23256.x. [DOI] [PubMed] [Google Scholar]
  20. Higgins D. L., Lewis S. D., Shafer J. A. Steady state kinetic parameters for the thrombin-catalyzed conversion of human fibrinogen to fibrin. J Biol Chem. 1983 Aug 10;258(15):9276–9282. [PubMed] [Google Scholar]
  21. Kaminski M., Siebenlist K. R., Mosesson M. W. Evidence for thrombin enhancement of fibrin polymerization that is independent of its catalytic activity. J Lab Clin Med. 1991 Mar;117(3):218–225. [PubMed] [Google Scholar]
  22. LATALLO Z. S., FLETCHER A. P., ALKJAERSIG N., SHERRY S. Influence of pH, ionic strength, neutral ions, and thrombin on fibrin polymerization. Am J Physiol. 1962 Apr;202:675–680. doi: 10.1152/ajplegacy.1962.202.4.675. [DOI] [PubMed] [Google Scholar]
  23. Langer B. G., Weisel J. W., Dinauer P. A., Nagaswami C., Bell W. R. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem. 1988 Oct 15;263(29):15056–15063. [PubMed] [Google Scholar]
  24. Laudano A. P., Doolittle R. F. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry. 1980 Mar 4;19(5):1013–1019. doi: 10.1021/bi00546a028. [DOI] [PubMed] [Google Scholar]
  25. Lewis S. D., Shields P. P., Shafer J. A. Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin. J Biol Chem. 1985 Aug 25;260(18):10192–10199. [PubMed] [Google Scholar]
  26. MIHALYI E. Transformation of fibrinogen into fibrin. I. Electrochemical investigation of the activation process. J Biol Chem. 1954 Aug;209(2):723–732. [PubMed] [Google Scholar]
  27. MIHALYI E. Transformation of fibrinogen into fibrin. II. Changes in pH during clotting of fibrinogen. J Biol Chem. 1954 Aug;209(2):733–741. [PubMed] [Google Scholar]
  28. Medved L. V., Litvinovich S. V., Ugarova T. P., Lukinova N. I., Kalikhevich V. N., Ardemasova Z. A. Localization of a fibrin polymerization site complementary to Gly-His-Arg sequence. FEBS Lett. 1993 Apr 12;320(3):239–242. doi: 10.1016/0014-5793(93)80594-k. [DOI] [PubMed] [Google Scholar]
  29. Mihalyi E. Clotting of bovine fibrinogen. Kinetic analysis of the release of fibrinopeptides by thrombin and of the calcium uptake upon clotting at high fibrinogen concentrations. Biochemistry. 1988 Feb 9;27(3):976–982. doi: 10.1021/bi00403a021. [DOI] [PubMed] [Google Scholar]
  30. Mosesson M. W., DiOrio J. P., Müller M. F., Shainoff J. R., Siebenlist K. R., Amrani D. L., Homandberg G. A., Soria J., Soria C., Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin). Blood. 1987 Apr;69(4):1073–1081. [PubMed] [Google Scholar]
  31. Nair C. H., Shah G. A., Dhall D. P. Effect of temperature, pH and ionic strength and composition on fibrin network structure and its development. Thromb Res. 1986 Jun 15;42(6):809–816. doi: 10.1016/0049-3848(86)90117-9. [DOI] [PubMed] [Google Scholar]
  32. SHULMAN S., KATZ S., FERRY J. D. The conversion of fibrinogen to fibrin. XIII. Dissolution of fibrin and inhibition of clotting by various neutral salts. J Gen Physiol. 1953 Jul;36(6):759–766. doi: 10.1085/jgp.36.6.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shainoff J. R., Dardik B. N. Fibrinopeptide B and aggregation of fibrinogen. Science. 1979 Apr 13;204(4389):200–202. doi: 10.1126/science.155308. [DOI] [PubMed] [Google Scholar]
  34. Shainoff J. R., Dardik B. N. Fibrinopeptide B in fibrin assembly and metabolism: physiologic significance in delayed release of the peptide. Ann N Y Acad Sci. 1983 Jun 27;408:254–268. doi: 10.1111/j.1749-6632.1983.tb23249.x. [DOI] [PubMed] [Google Scholar]
  35. Shimizu A., Saito Y., Inada Y. Distinctive role of histidine-16 of the B beta chain of fibrinogen in the end-to-end association of fibrin. Proc Natl Acad Sci U S A. 1986 Feb;83(3):591–593. doi: 10.1073/pnas.83.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shimizu A., Saito Y., Matsushima A., Inada Y. Identification of an essential histidine residue for fibrin polymerization. Essential role of histidine 16 of the B beta-chain. J Biol Chem. 1983 Jul 10;258(13):7915–7917. [PubMed] [Google Scholar]
  37. Spraggon G., Everse S. J., Doolittle R. F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997 Oct 2;389(6650):455–462. doi: 10.1038/38947. [DOI] [PubMed] [Google Scholar]
  38. Veklich Y. I., Gorkun O. V., Medved L. V., Nieuwenhuizen W., Weisel J. W. Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization. J Biol Chem. 1993 Jun 25;268(18):13577–13585. [PubMed] [Google Scholar]
  39. Vindigni A., Di Cera E. Release of fibrinopeptides by the slow and fast forms of thrombin. Biochemistry. 1996 Apr 9;35(14):4417–4426. doi: 10.1021/bi952834d. [DOI] [PubMed] [Google Scholar]
  40. Weisel J. W. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J. 1986 Dec;50(6):1079–1093. doi: 10.1016/S0006-3495(86)83552-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weisel J. W., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J. 1992 Jul;63(1):111–128. doi: 10.1016/S0006-3495(92)81594-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weisel J. W., Veklich Y., Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993 Jul 5;232(1):285–297. doi: 10.1006/jmbi.1993.1382. [DOI] [PubMed] [Google Scholar]
  43. Yee V. C., Pratt K. P., Côté H. C., Trong I. L., Chung D. W., Davie E. W., Stenkamp R. E., Teller D. C. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen. Structure. 1997 Jan 15;5(1):125–138. doi: 10.1016/s0969-2126(97)00171-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES