Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1989–1996. doi: 10.1016/S0006-3495(98)77640-4

The use of variable density self-assembled monolayers to probe the structure of a target molecule.

C Bamdad 1
PMCID: PMC1299870  PMID: 9746540

Abstract

VP16, a protein encoded by herpes simplex virus, has a well-characterized 78 amino acid acidic activation domain. When tethered to DNA, tandem repeats of an eight amino acid motif taken from this region stimulate the transcription of a nearby gene. This work addresses how these minimal activation motifs interact with a putative target, the general transcription factor TATA box binding protein (TBP), and the biological relevance of this mechanism of action. I developed novel biophysical techniques to discriminate among three possible mechanistic models that describe how reiterated peptide motifs could synergistically effect transcription: 1) the peptide motifs simultaneously bind to quasi-identical sites on TBP, producing a high-affinity bivalent interaction that holds the general transcription factor near the start site of transcription; 2) the binding of one recognition motif causes an allosteric effect that enhances the subsequent binding of additional peptide motifs; or 3) a high-affinity interaction between the peptide repeats and TBP does occur, but rather than being the result of a "bivalent" interaction, it results from the summation of multiple interactions between the target protein and the entire length of the peptide. I generated self-assembled monolayers (SAMs) that presented different densities of the activation motif peptide in a two-dimensional array to test for avidity effects. Surface plasmon resonance (SPR) was used to measure the amount of target (TBP) binding as a function of the peptide density; a marked increase in avidity above a characteristic, critical peptide surface density was found. Competitive inhibition experiments were performed to compare the avidity of peptide motifs, tandemly repeated two or four times, and single motifs separated by a flexible linker. Four iterations of the motif, preincubated with TBP, inhibited its binding to high-density peptide surfaces approximately 250-fold better than two iterations. Single peptide motifs joined by a flexible amino acid linker inhibited TBP binding to surface peptide nearly as well as four tandem repeats. The results favor mechanistic model 1: reiterated activation motifs interact with TBP through a high-affinity interaction that is the result of the cooperative effect of single motifs simultaneously binding to separate sites on TBP. This finding is consistent with the idea that DNA-bound activation domains trigger the transcription of a nearby gene by tethering the general transcription factor, TBP, near the start site of transcription.

Full Text

The Full Text of this article is available as a PDF (105.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baleja J. D., Marmorstein R., Harrison S. C., Wagner G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature. 1992 Apr 2;356(6368):450–453. doi: 10.1038/356450a0. [DOI] [PubMed] [Google Scholar]
  2. Brent R., Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell. 1985 Dec;43(3 Pt 2):729–736. doi: 10.1016/0092-8674(85)90246-6. [DOI] [PubMed] [Google Scholar]
  3. Burley S. K., Roeder R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem. 1996;65:769–799. doi: 10.1146/annurev.bi.65.070196.004005. [DOI] [PubMed] [Google Scholar]
  4. Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell. 1992 Dec 24;71(7):1223–1237. doi: 10.1016/s0092-8674(05)80070-4. [DOI] [PubMed] [Google Scholar]
  5. Hochuli E., Döbeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr. 1987 Dec 18;411:177–184. doi: 10.1016/s0021-9673(00)93969-4. [DOI] [PubMed] [Google Scholar]
  6. Hori R., Pyo S., Carey M. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6047–6051. doi: 10.1073/pnas.92.13.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ingles C. J., Shales M., Cress W. D., Triezenberg S. J., Greenblatt J. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature. 1991 Jun 13;351(6327):588–590. doi: 10.1038/351588a0. [DOI] [PubMed] [Google Scholar]
  8. Jencks W. P. On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046–4050. doi: 10.1073/pnas.78.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee W. S., Kao C. C., Bryant G. O., Liu X., Berk A. J. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell. 1991 Oct 18;67(2):365–376. doi: 10.1016/0092-8674(91)90188-5. [DOI] [PubMed] [Google Scholar]
  10. Lin Y. S., Carey M., Ptashne M., Green M. R. How different eukaryotic transcriptional activators can cooperate promiscuously. Nature. 1990 May 24;345(6273):359–361. doi: 10.1038/345359a0. [DOI] [PubMed] [Google Scholar]
  11. Marmorstein R., Carey M., Ptashne M., Harrison S. C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992 Apr 2;356(6368):408–414. doi: 10.1038/356408a0. [DOI] [PubMed] [Google Scholar]
  12. Nikolov D. B., Chen H., Halay E. D., Hoffman A., Roeder R. G., Burley S. K. Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4862–4867. doi: 10.1073/pnas.93.10.4862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nikolov D. B., Chen H., Halay E. D., Usheva A. A., Hisatake K., Lee D. K., Roeder R. G., Burley S. K. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature. 1995 Sep 14;377(6545):119–128. doi: 10.1038/377119a0. [DOI] [PubMed] [Google Scholar]
  14. Parvin J. D., McCormick R. J., Sharp P. A., Fisher D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature. 1995 Feb 23;373(6516):724–727. doi: 10.1038/373724a0. [DOI] [PubMed] [Google Scholar]
  15. Sheldon M., Reinberg D. Transcriptional activation. Tuning-up transcription. Curr Biol. 1995 Jan 1;5(1):43–46. doi: 10.1016/s0960-9822(95)00014-5. [DOI] [PubMed] [Google Scholar]
  16. Sigal G. B., Bamdad C., Barberis A., Strominger J., Whitesides G. M. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem. 1996 Feb 1;68(3):490–497. doi: 10.1021/ac9504023. [DOI] [PubMed] [Google Scholar]
  17. Taggart A. K., Pugh B. F. Dimerization of TFIID when not bound to DNA. Science. 1996 May 31;272(5266):1331–1333. doi: 10.1126/science.272.5266.1331. [DOI] [PubMed] [Google Scholar]
  18. Tanaka M., Herr W. Reconstitution of transcriptional activation domains by reiteration of short peptide segments reveals the modular organization of a glutamine-rich activation domain. Mol Cell Biol. 1994 Sep;14(9):6056–6067. doi: 10.1128/mcb.14.9.6056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanaka M. Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4311–4315. doi: 10.1073/pnas.93.9.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Triezenberg S. J. Structure and function of transcriptional activation domains. Curr Opin Genet Dev. 1995 Apr;5(2):190–196. doi: 10.1016/0959-437x(95)80007-7. [DOI] [PubMed] [Google Scholar]
  21. Xiao H., Friesen J. D., Lis J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol. 1995 Oct;15(10):5757–5761. doi: 10.1128/mcb.15.10.5757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES