Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):2030–2037. doi: 10.1016/S0006-3495(98)77645-3

Tapping mode atomic force microscopy of hyaluronan: extended and intramolecularly interacting chains.

M K Cowman 1, M Li 1, E A Balazs 1
PMCID: PMC1299875  PMID: 9746545

Abstract

The extracellular matrix polysaccharide hyaluronan has been examined by tapping mode atomic force microscopy. High molecular weight hyaluronan was deposited on mica from dilute aqueous solution and imaged in air. Long unbranched chains could be observed and were found to be compatible with the known covalent structure of hyaluronan. In addition, chains with evidence of intramolecular association were observed. In the simplest cases, the association took the form of loops stabilized by antiparallel double-stranded (probably double-helical) segments. In other cases, the polarity of the associated regions could not be determined. Extensive intramolecular association in long hyaluronan chains resulted in a fenestrated structure of the same type as that formed by intermolecular association at higher concentrations.

Full Text

The Full Text of this article is available as a PDF (557.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Mitra A. K., Raghunathan S. Hyaluronic acid double helix. J Mol Biol. 1983 Oct 5;169(4):861–872. doi: 10.1016/s0022-2836(83)80140-5. [DOI] [PubMed] [Google Scholar]
  2. Balazs E. A. Viscoelastic properties of hyaluronic acid and biological lubrication. Univ Mich Med Cent J. 1968:255–259. [PubMed] [Google Scholar]
  3. Brewton R. G., Mayne R. Mammalian vitreous humor contains networks of hyaluronan molecules: electron microscopic analysis using the hyaluronan-binding region (G1) of aggrecan and link protein. Exp Cell Res. 1992 Feb;198(2):237–249. doi: 10.1016/0014-4827(92)90376-j. [DOI] [PubMed] [Google Scholar]
  4. Guss J. M., Hukins D. W., Smith P. J., Winter W. T., Arnott S. Hyaluronic acid: molecular conformations and interactions in two sodium salts. J Mol Biol. 1975 Jul 5;95(3):359–384. doi: 10.1016/0022-2836(75)90196-5. [DOI] [PubMed] [Google Scholar]
  5. Laurent T. C., Laurent U. B., Fraser J. R. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996 Apr;74(2):A1–A7. doi: 10.1038/icb.1996.32. [DOI] [PubMed] [Google Scholar]
  6. Lee H. G., Cowman M. K. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem. 1994 Jun;219(2):278–287. doi: 10.1006/abio.1994.1267. [DOI] [PubMed] [Google Scholar]
  7. MEYER K. Chemical structure of hyaluronic acid. Fed Proc. 1958 Dec;17(4):1075–1077. [PubMed] [Google Scholar]
  8. Morris E. R., Rees D. A., Welsh E. J. Conformation and dynamic interactions in hyaluronate solutions. J Mol Biol. 1980 Apr;138(2):383–400. doi: 10.1016/0022-2836(80)90294-6. [DOI] [PubMed] [Google Scholar]
  9. Scott J. E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem J. 1991 Mar 15;274(Pt 3):699–705. doi: 10.1042/bj2740699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scott J. E., Cummings C., Greiling H., Stuhlsatz H. W., Gregory J. D., Damle S. P. Examination of corneal proteoglycans and glycosaminoglycans by rotary shadowing and electron microscopy. Int J Biol Macromol. 1990 Jun;12(3):180–184. doi: 10.1016/0141-8130(90)90029-a. [DOI] [PubMed] [Google Scholar]
  11. Sheehan J. K., Gardner K. H., Atkins E. D. Hyaluronic acid: a double-helical structure in the presence of potassium at low pH and found also with the cations ammonium, rubidium and caesium. J Mol Biol. 1977 Nov 25;117(1):113–135. doi: 10.1016/0022-2836(77)90027-4. [DOI] [PubMed] [Google Scholar]
  12. Turner R. E., Lin P. Y., Cowman M. K. Self-association of hyaluronate segments in aqueous NaCl solution. Arch Biochem Biophys. 1988 Sep;265(2):484–495. doi: 10.1016/0003-9861(88)90153-1. [DOI] [PubMed] [Google Scholar]
  13. Welsh E. J., Rees D. A., Morris E. R., Madden J. K. Competitive inhibition evidence for specific intermolecular interactions in hyaluronate solutions. J Mol Biol. 1980 Apr;138(2):375–382. doi: 10.1016/0022-2836(80)90293-4. [DOI] [PubMed] [Google Scholar]
  14. Yanaki T., Yamaguchi T. Temporary network formation of hyaluronate under a physiological condition. 1. Molecular-weight dependence. Biopolymers. 1990;30(3-4):415–425. doi: 10.1002/bip.360300319. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES