Abstract
We report the results of constant temperature and pressure molecular dynamics calculations carried out on the liquid crystal (Lalpha) phase of dipalmitoylphosphatidylcholine with a mole fraction of 6.5% halothane (2-3 MAC). The present results are compared with previous simulations for pure dipalmitoylphosphatidylcholine under the same conditions (Tu et al., 1995. Biophys. J. 69:2558-2562) and with various experimental data. We have found subtle structural changes in the lipid bilayer in the presence of the anesthetic compared with the pure lipid bilayer: a small lateral expansion is accompanied by a modest contraction in the bilayer thickness. However, the overall increase in the system volume is found to be comparable to the molecular volume of the added anesthetic molecules. No significant change in the hydrocarbon chain conformations is apparent. The observed structural changes are in fair agreement with NMR data corresponding to low anesthetic concentrations. We have found that halothane exhibits no specific binding to the lipid headgroup or to the acyl chains. No evidence is obtained for preferential orientation of halothane molecules with respect to the lipid/water interface. The overall dynamics of the lipid-bound halothane molecules appears to be reminiscent of that of other small solutes (Bassolino-Klimas et al., 1995. J. Am. Chem. Soc. 117:4118-4129).
Full Text
The Full Text of this article is available as a PDF (399.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baber J., Ellena J. F., Cafiso D. S. Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy. Biochemistry. 1995 May 16;34(19):6533–6539. doi: 10.1021/bi00019a035. [DOI] [PubMed] [Google Scholar]
- Bassolino-Klimas D., Alper H. E., Stouch T. R. Solute diffusion in lipid bilayer membranes: an atomic level study by molecular dynamics simulation. Biochemistry. 1993 Nov 30;32(47):12624–12637. doi: 10.1021/bi00210a010. [DOI] [PubMed] [Google Scholar]
- Cantor R. S. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997 Mar 4;36(9):2339–2344. doi: 10.1021/bi9627323. [DOI] [PubMed] [Google Scholar]
- Chipot C., Wilson M. A., Pohorille A. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study. J Phys Chem B. 1997 Jan 30;101(5):782–791. doi: 10.1021/jp961513o. [DOI] [PubMed] [Google Scholar]
- Craig N. C., Bryant G. J., Levin I. W. Effects of halothane on dipalmitoylphosphatidylcholine liposomes: a Raman spectroscopic study. Biochemistry. 1987 May 5;26(9):2449–2458. doi: 10.1021/bi00383a008. [DOI] [PubMed] [Google Scholar]
- Dreger M., Krauss M., Herrmann A., Hucho F. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry. 1997 Jan 28;36(4):839–847. doi: 10.1021/bi960666z. [DOI] [PubMed] [Google Scholar]
- Eckenhoff R. G., Johansson J. S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997 Dec;49(4):343–367. [PubMed] [Google Scholar]
- Firestone L. L., Alifimoff J. K., Miller K. W. Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering? Mol Pharmacol. 1994 Sep;46(3):508–515. [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Inhibitory synapses. Anaesthetics set their sites on ion channels. Nature. 1997 Sep 25;389(6649):334–335. doi: 10.1038/38614. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Is membrane expansion relevant to anaesthesia? Nature. 1981 Jul 16;292(5820):248–251. doi: 10.1038/292248a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Mechanisms of general anesthesia. Environ Health Perspect. 1990 Jul;87:199–205. doi: 10.1289/ehp.9087199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. The structure of lipid bilayers and the effects of general anaesthetics. An x-ray and neutron diffraction study. J Mol Biol. 1979 Oct 9;133(4):469–500. doi: 10.1016/0022-2836(79)90403-0. [DOI] [PubMed] [Google Scholar]
- Harris B. D., Wong G., Moody E. J., Skolnick P. Different subunit requirements for volatile and nonvolatile anesthetics at gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1995 Feb;47(2):363–367. [PubMed] [Google Scholar]
- Huang P., Bertaccini E., Loew G. H. Molecular dynamics simulation of anesthetic-phospholipid bilayer interactions. J Biomol Struct Dyn. 1995 Feb;12(4):725–754. doi: 10.1080/07391102.1995.10508773. [DOI] [PubMed] [Google Scholar]
- Johansson J. S., Eckenhoff R. G., Dutton P. L. Binding of halothane to serum albumin demonstrated using tryptophan fluorescence. Anesthesiology. 1995 Aug;83(2):316–324. doi: 10.1097/00000542-199508000-00012. [DOI] [PubMed] [Google Scholar]
- Jähnig F. What is the surface tension of a lipid bilayer membrane? Biophys J. 1996 Sep;71(3):1348–1349. doi: 10.1016/S0006-3495(96)79336-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieb W. R., Kovalycsik M., Mendelsohn R. Do clinical levels of general anaesthetics affect lipid bilayers? Evidence from Raman scattering. Biochim Biophys Acta. 1982 Jun 14;688(2):388–398. doi: 10.1016/0005-2736(82)90350-9. [DOI] [PubMed] [Google Scholar]
- Lieb W. R., Stein W. D. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature. 1969 Oct 18;224(5216):240–243. doi: 10.1038/224240a0. [DOI] [PubMed] [Google Scholar]
- Lieb W. R., Stein W. D. Implications of two different types of diffusion for biological membranes. Nat New Biol. 1971 Sep 15;234(50):220–222. doi: 10.1038/newbio234220a0. [DOI] [PubMed] [Google Scholar]
- Lung N. P., Thompson J. P., Kollias G. V., Jr, Klein P. A. Development of monoclonal antibodies for measurement of immunoglobulin G antibody responses in blue and gold macaws (Ara ararauna). Am J Vet Res. 1996 Aug;57(8):1157–1161. [PubMed] [Google Scholar]
- Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
- Miller K. W. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27:1–61. doi: 10.1016/s0074-7742(08)60555-3. [DOI] [PubMed] [Google Scholar]
- Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North C., Cafiso D. S. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J. 1997 Apr;72(4):1754–1761. doi: 10.1016/S0006-3495(97)78821-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohorille A., Cieplak P., Wilson M. A. Interactions of anesthetics with the membrane-water interface. Chem Phys. 1996 Apr 1;204(2-3):337–345. doi: 10.1016/0301-0104(95)00292-8. [DOI] [PubMed] [Google Scholar]
- Pohorille A., Wilson M. A. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces. J Chem Phys. 1996 Mar 8;104(10):3760–3773. doi: 10.1063/1.471030. [DOI] [PubMed] [Google Scholar]
- Pringle M. J., Miller K. W. Differential effects on phospholipid phase transitions produced by structurally related long-chain alcohols. Biochemistry. 1979 Jul 24;18(15):3314–3320. doi: 10.1021/bi00582a018. [DOI] [PubMed] [Google Scholar]
- Shieh D. D., Ueda I., Lin H., Eyring H. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3999–4002. doi: 10.1073/pnas.73.11.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon S. A., McIntosh T. J., Bennett P. B., Shrivastav B. B. Interaction of halothane with lipid bilayers. Mol Pharmacol. 1979 Jul;16(1):163–170. [PubMed] [Google Scholar]
- Sunshine C., McNamee M. G. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta. 1994 Apr 20;1191(1):59–64. doi: 10.1016/0005-2736(94)90233-x. [DOI] [PubMed] [Google Scholar]
- Tang P., Yan B., Xu Y. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys J. 1997 Apr;72(4):1676–1682. doi: 10.1016/S0006-3495(97)78813-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trudell J. R., Hubbell W. L., Cohen E. N. Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):328–334. doi: 10.1016/s0005-2736(73)80001-x. [DOI] [PubMed] [Google Scholar]
- Trudell J. R., Hubbell W. L. Localization of molecular halothane in phospholipid bilayer model nerve membranes. Anesthesiology. 1976 Mar;44(3):202–205. doi: 10.1097/00000542-197603000-00005. [DOI] [PubMed] [Google Scholar]
- Trudell J. R. The membrane volume occupied by anesthetic molecules: a reinterpretation of the erythrocyte expansion data. Biochim Biophys Acta. 1977 Nov 1;470(3):509–510. doi: 10.1016/0005-2736(77)90143-2. [DOI] [PubMed] [Google Scholar]
- Tsai Y. S., Ma S. M., Kamaya H., Ueda I. Fourier transform infrared studies on phospholipid hydration: phosphate-oriented hydrogen bonding and its attenuation by volatile anesthetics. Mol Pharmacol. 1987 Jun;31(6):623–630. [PubMed] [Google Scholar]
- Tsai Y. S., Ma S. M., Nishimura S., Ueda I. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition. Biochim Biophys Acta. 1990 Feb 28;1022(2):245–250. doi: 10.1016/0005-2736(90)90120-d. [DOI] [PubMed] [Google Scholar]
- Tu K., Tobias D. J., Blasie J. K., Klein M. L. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. Biophys J. 1996 Feb;70(2):595–608. doi: 10.1016/S0006-3495(96)79623-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu K., Tobias D. J., Klein M. L. Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophys J. 1995 Dec;69(6):2558–2562. doi: 10.1016/S0006-3495(95)80126-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda I., Tseng H. S., Kaminoh Y., Ma S. M., Kamaya H., Lin S. H. Anesthetics release unfreezable and bound water in partially hydrated phospholipid lamellar systems and elevate phase transition temperature. Mol Pharmacol. 1986 Jun;29(6):582–588. [PubMed] [Google Scholar]
- Xu Y., Tang P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim Biophys Acta. 1997 Jan 14;1323(1):154–162. doi: 10.1016/s0005-2736(96)00184-8. [DOI] [PubMed] [Google Scholar]
- Yoshida T., Takahashi K., Ueda I. Molecular orientation of volatile anesthetics at the binding surface: 1H- and 19F-NMR studies of submolecular affinity. Biochim Biophys Acta. 1989 Nov 3;985(3):331–333. doi: 10.1016/0005-2736(89)90421-5. [DOI] [PubMed] [Google Scholar]