Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2205–2211. doi: 10.1016/S0006-3495(98)77664-7

Structural basis for the inhibition of firefly luciferase by a general anesthetic.

N P Franks 1, A Jenkins 1, E Conti 1, W R Lieb 1, P Brick 1
PMCID: PMC1299894  PMID: 9788915

Abstract

The firefly luciferase enzyme from Photinus pyralis is probably the best-characterized model system for studying anesthetic-protein interactions. It binds a diverse range of general anesthetics over a large potency range, displays a sensitivity to anesthetics that is very similar to that found in animals, and has an anesthetic sensitivity that can be modulated by one of its substrates (ATP). In this paper we describe the properties of bromoform acting as a general anesthetic (in Rana temporaria tadpoles) and as an inhibitor of the firefly luciferase enzyme at high and low ATP concentrations. In addition, we describe the crystal structure of the low-ATP form of the luciferase enzyme in the presence of bromoform at 2.2-A resolution. These results provide a structural basis for understanding the anesthetic inhibition of the enzyme, as well as an explanation for the ATP modulation of its anesthetic sensitivity.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham M. H., Lieb W. R., Franks N. P. Role of hydrogen bonding in general anesthesia. J Pharm Sci. 1991 Aug;80(8):719–724. doi: 10.1002/jps.2600800802. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  3. Conti E., Franks N. P., Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 1996 Mar 15;4(3):287–298. doi: 10.1016/s0969-2126(96)00033-0. [DOI] [PubMed] [Google Scholar]
  4. Conti E., Lloyd L. F., Akins J., Franks N. P., Brick P. Crystallization and preliminary diffraction studies of firefly luciferase from Photinus pyralis. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):876–878. doi: 10.1107/S0907444996002405. [DOI] [PubMed] [Google Scholar]
  5. Conti E., Stachelhaus T., Marahiel M. A., Brick P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 1997 Jul 16;16(14):4174–4183. doi: 10.1093/emboj/16.14.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson R., Franks N. P., Lieb W. R. Thermodynamics of anesthetic/protein interactions. Temperature studies on firefly luciferase. Biophys J. 1993 Apr;64(4):1264–1271. doi: 10.1016/S0006-3495(93)81491-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forman S. A., Miller K. W., Yellen G. A discrete site for general anesthetics on a postsynaptic receptor. Mol Pharmacol. 1995 Oct;48(4):574–581. [PubMed] [Google Scholar]
  8. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  9. Franks N. P., Lieb W. R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985 Jul 25;316(6026):349–351. doi: 10.1038/316349a0. [DOI] [PubMed] [Google Scholar]
  10. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  11. Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
  12. Franks N. P., Lieb W. R. Where do general anaesthetics act? Nature. 1978 Jul 27;274(5669):339–342. doi: 10.1038/274339a0. [DOI] [PubMed] [Google Scholar]
  13. Gursky O., Fontano E., Bhyravbhatla B., Caspar D. L. Stereospecific dihaloalkane binding in a pH-sensitive cavity in cubic insulin crystals. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12388–12392. doi: 10.1073/pnas.91.26.12388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansch C., Vittoria A., Silipo C., Jow P. Y. Partition coefficients and the structure-activity relationship of the anesthetic gases. J Med Chem. 1975 Jun;18(6):546–548. doi: 10.1021/jm00240a002. [DOI] [PubMed] [Google Scholar]
  15. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  16. Miller K. W. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27:1–61. doi: 10.1016/s0074-7742(08)60555-3. [DOI] [PubMed] [Google Scholar]
  17. Moss G. W., Franks N. P., Lieb W. R. Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):134–138. doi: 10.1073/pnas.88.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RAVENTOS J. The action of fluothane; a new volatile anaesthetic. Br J Pharmacol Chemother. 1956 Dec;11(4):394–410. doi: 10.1111/j.1476-5381.1956.tb00007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sandorfy C. Intermolecular interactions and anesthesia. Anesthesiology. 1978 May;48(5):357–359. doi: 10.1097/00000542-197805000-00010. [DOI] [PubMed] [Google Scholar]
  20. Schoenborn B. P. Dichloromethane as an antisickling agent in sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4195–4199. doi: 10.1073/pnas.73.11.4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schoenborn B. P., Watson H. C., Kendrew J. C. Binding of xenon to sperm whale myoglobin. Nature. 1965 Jul 3;207(992):28–30. doi: 10.1038/207028a0. [DOI] [PubMed] [Google Scholar]
  22. Taheri S., Halsey M. J., Liu J., Eger E. I., 2nd, Koblin D. D., Laster M. J. What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth Analg. 1991 May;72(5):627–634. doi: 10.1213/00000539-199105000-00010. [DOI] [PubMed] [Google Scholar]
  23. Tomlin S. L., Jenkins A., Lieb W. R., Franks N. P. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology. 1998 Mar;88(3):708–717. doi: 10.1097/00000542-199803000-00022. [DOI] [PubMed] [Google Scholar]
  24. Ueda I., Kamaya H. Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology. 1973 May;38(5):425–436. doi: 10.1097/00000542-197305000-00002. [DOI] [PubMed] [Google Scholar]
  25. Waud D. R. On biological assays involving quantal responses. J Pharmacol Exp Ther. 1972 Dec;183(3):577–607. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES