Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2212–2219. doi: 10.1016/S0006-3495(98)77665-9

A model of the quaternary structure of the Escherichia coli F1 ATPase from X-ray solution scattering and evidence for structural changes in the delta subunit during ATP hydrolysis.

D I Svergun 1, I Aldag 1, T Sieck 1, K Altendorf 1, M H Koch 1, D J Kane 1, M B Kozin 1, G Grüber 1
PMCID: PMC1299895  PMID: 9788916

Abstract

The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.

Full Text

The Full Text of this article is available as a PDF (292.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Aggeler R., Haughton M. A., Capaldi R. A. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem. 1995 Apr 21;270(16):9185–9191. doi: 10.1074/jbc.270.16.9185. [DOI] [PubMed] [Google Scholar]
  3. Aggeler R., Ogilvie I., Capaldi R. A. Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. The gamma-epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. J Biol Chem. 1997 Aug 1;272(31):19621–19624. doi: 10.1074/jbc.272.31.19621. [DOI] [PubMed] [Google Scholar]
  4. Arnold A., Wolf H. U., Ackermann B. P., Bader H. An automated continuous assay of membrane-bound and solube ATPases and related enzymes. Anal Biochem. 1976 Mar;71(1):209–213. doi: 10.1016/0003-2697(76)90029-4. [DOI] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Bianchet M., Ysern X., Hullihen J., Pedersen P. L., Amzel L. M. Mitochondrial ATP synthase. Quaternary structure of the F1 moiety at 3.6 A determined by x-ray diffraction analysis. J Biol Chem. 1991 Nov 5;266(31):21197–21201. [PubMed] [Google Scholar]
  7. Bioenergetics. Dedicated to Professor E.C. Slater on the occasion of his 75th birthday. Biochim Biophys Acta. 1992 Jan 16;1098(2):131–274. [PubMed] [Google Scholar]
  8. Bragg P. D., Hou C. Effect of disulfide cross-linking between alpha and delta subunits on the properties of the F1 adenosine triphosphatase of Escherichia coli. Biochim Biophys Acta. 1986 Oct 8;851(3):385–394. doi: 10.1016/0005-2728(86)90075-7. [DOI] [PubMed] [Google Scholar]
  9. Deckers-Hebestreit G., Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol. 1996;50:791–824. doi: 10.1146/annurev.micro.50.1.791. [DOI] [PubMed] [Google Scholar]
  10. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  11. Engelbrecht S., Junge W. ATP synthase: a tentative structural model. FEBS Lett. 1997 Sep 15;414(3):485–491. doi: 10.1016/s0014-5793(97)00997-6. [DOI] [PubMed] [Google Scholar]
  12. Engelbrecht S., Reed J., Penin F., Gautheron D. C., Junge W. Subunit delta of chloroplast F0F1-ATPase and OSCP of mitochondrial F0F1-ATPase: a comparison by CD-spectroscopy. Z Naturforsch C. 1991 Sep-Oct;46(9-10):759–764. doi: 10.1515/znc-1991-9-1007. [DOI] [PubMed] [Google Scholar]
  13. Gogol E. P., Aggeler R., Sagermann M., Capaldi R. A. Cryoelectron microscopy of Escherichia coli F1 adenosinetriphosphatase decorated with monoclonal antibodies to individual subunits of the complex. Biochemistry. 1989 May 30;28(11):4717–4724. doi: 10.1021/bi00437a031. [DOI] [PubMed] [Google Scholar]
  14. Gogol E. P., Lücken U., Bork T., Capaldi R. A. Molecular architecture of Escherichia coli F1 adenosinetriphosphatase. Biochemistry. 1989 May 30;28(11):4709–4716. doi: 10.1021/bi00437a030. [DOI] [PubMed] [Google Scholar]
  15. Grüber G., Capaldi R. A. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits. Biochemistry. 1996 Apr 2;35(13):3875–3879. doi: 10.1021/bi952949h. [DOI] [PubMed] [Google Scholar]
  16. Grüber G., Capaldi R. A. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites. J Biol Chem. 1996 Dec 20;271(51):32623–32628. doi: 10.1074/jbc.271.51.32623. [DOI] [PubMed] [Google Scholar]
  17. Grüber G., Hausrath A., Sagermann M., Capaldi R. A. An improved purification of ECF1 and ECF1F0 by using a cytochrome bo-deficient strain of Escherichia coli facilitates crystallization of these complexes. FEBS Lett. 1997 Jun 30;410(2-3):165–168. doi: 10.1016/s0014-5793(97)00528-0. [DOI] [PubMed] [Google Scholar]
  18. Matsui T., Muneyuki E., Honda M., Allison W. S., Dou C., Yoshida M. Catalytic activity of the alpha3beta3gamma complex of F1-ATPase without noncatalytic nucleotide binding site. J Biol Chem. 1997 Mar 28;272(13):8215–8221. doi: 10.1074/jbc.272.13.8215. [DOI] [PubMed] [Google Scholar]
  19. Mendel-Hartvig J., Capaldi R. A. Structure-function relationships of domains of the delta subunit in Escherichia coli adenosine triphosphatase. Biochim Biophys Acta. 1991 Sep 27;1060(1):115–124. doi: 10.1016/s0005-2728(05)80126-4. [DOI] [PubMed] [Google Scholar]
  20. Ogilvie I., Aggeler R., Capaldi R. A. Cross-linking of the delta subunit to one of the three alpha subunits has no effect on functioning, as expected if delta is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase. J Biol Chem. 1997 Jun 27;272(26):16652–16656. doi: 10.1074/jbc.272.26.16652. [DOI] [PubMed] [Google Scholar]
  21. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  22. Shirakihara Y., Leslie A. G., Abrahams J. P., Walker J. E., Ueda T., Sekimoto Y., Kambara M., Saika K., Kagawa Y., Yoshida M. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure. 1997 Jun 15;5(6):825–836. doi: 10.1016/s0969-2126(97)00236-0. [DOI] [PubMed] [Google Scholar]
  23. Svergun D. I., Barberato C., Koch M. H., Fetler L., Vachette P. Large differences are observed between the crystal and solution quaternary structures of allosteric aspartate transcarbamylase in the R state. Proteins. 1997 Jan;27(1):110–117. [PubMed] [Google Scholar]
  24. Svergun D. I., Burkhardt N., Pedersen J. S., Koch M. H., Volkov V. V., Kozin M. B., Meerwink W., Stuhrmann H. B., Diedrich G., Nierhaus K. H. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. I. Invariants and validation of electron microscopy models. J Mol Biol. 1997 Aug 29;271(4):588–601. doi: 10.1006/jmbi.1997.1190. [DOI] [PubMed] [Google Scholar]
  25. Svergun D. I., Burkhardt N., Pedersen J. S., Koch M. H., Volkov V. V., Kozin M. B., Meerwink W., Stuhrmann H. B., Diedrich G., Nierhaus K. H. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J Mol Biol. 1997 Aug 29;271(4):602–618. doi: 10.1006/jmbi.1997.1191. [DOI] [PubMed] [Google Scholar]
  26. Svergun D. I., Burkhardt N., Pedersen J. S., Koch M. H., Volkov V. V., Kozin M. B., Meerwink W., Stuhrmann H. B., Diedrich G., Nierhaus K. H. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J Mol Biol. 1997 Aug 29;271(4):602–618. doi: 10.1006/jmbi.1997.1191. [DOI] [PubMed] [Google Scholar]
  27. Tozer R. G., Dunn S. D. Column centrifugation generates an intersubunit disulfide bridge in Escherichia coli F1-ATPase. Eur J Biochem. 1986 Dec 1;161(2):513–518. doi: 10.1111/j.1432-1033.1986.tb10472.x. [DOI] [PubMed] [Google Scholar]
  28. Uhlin U., Cox G. B., Guss J. M. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure. 1997 Sep 15;5(9):1219–1230. doi: 10.1016/s0969-2126(97)00272-4. [DOI] [PubMed] [Google Scholar]
  29. Weber J., Senior A. E. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta. 1997 Mar 28;1319(1):19–58. doi: 10.1016/s0005-2728(96)00121-1. [DOI] [PubMed] [Google Scholar]
  30. Weber J., Senior A. E. F1F0-ATP synthase: development of direct optical probes of the catalytic mechanism. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):101–104. doi: 10.1016/0005-2728(96)00057-6. [DOI] [PubMed] [Google Scholar]
  31. Wilkens S., Dahlquist F. W., McIntosh L. P., Donaldson L. W., Capaldi R. A. Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Biol. 1995 Nov;2(11):961–967. doi: 10.1038/nsb1195-961. [DOI] [PubMed] [Google Scholar]
  32. Wilkens S., Dunn S. D., Chandler J., Dahlquist F. W., Capaldi R. A. Solution structure of the N-terminal domain of the delta subunit of the E. coli ATPsynthase. Nat Struct Biol. 1997 Mar;4(3):198–201. doi: 10.1038/nsb0397-198. [DOI] [PubMed] [Google Scholar]
  33. Zhang Y., Fillingame R. H. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. J Biol Chem. 1995 Oct 13;270(41):24609–24614. [PubMed] [Google Scholar]
  34. Ziegler M., Xiao R., Penefsky H. S. Close proximity of Cys64 and Cys140 in the delta subunit of Escherichia coli F1-ATPase. J Biol Chem. 1994 Feb 11;269(6):4233–4239. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES