Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2220–2228. doi: 10.1016/S0006-3495(98)77666-0

Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy.

O H Willemsen 1, M M Snel 1, K O van der Werf 1, B G de Grooth 1, J Greve 1, P Hinterdorfer 1, H J Gruber 1, H Schindler 1, Y van Kooyk 1, C G Figdor 1
PMCID: PMC1299896  PMID: 9788917

Abstract

Specific molecular recognition events, detected by atomic force microscopy (AFM), so far lack the detailed topographical information that is usually observed in AFM. We have modified our AFM such that, in combination with a recently developed method to measure antibody-antigen recognition on the single molecular level (Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Proc. Natl. Acad. Sci. USA 93:3477-3481 (1996)), it allows imaging of a submonolayer of intercellular adhesion molecule-1 (ICAM-1) in adhesion mode. We demonstrate that for the first time the resolution of the topographical image in adhesion mode is only limited by tip convolution and thus comparable to tapping mode images. This is demonstrated by imaging of individual ICAM-1 antigens in both the tapping mode and the adhesion mode. The contrast in the adhesion image that was measured simultaneously with the topography is caused by recognition between individual antibody-antigen pairs. By comparing the high-resolution height image with the adhesion image, it is possible to show that specific molecular recognition is highly correlated with topography. The stability of the improved microscope enabled imaging with forces as low as 100 pN and ultrafast scan speed of 22 force curves per second. The analysis of force curves showed that reproducible unbinding events on subsequent scan lines could be measured.

Full Text

The Full Text of this article is available as a PDF (351.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Bloemen P., Moldenhauer G., van Dijk M., Schuurman H. J., Bloem A. C. Multiple ICAM-1 (CD54) epitopes are involved in homotypic B-cell adhesion. Scand J Immunol. 1992 May;35(5):517–523. doi: 10.1111/j.1365-3083.1992.tb03250.x. [DOI] [PubMed] [Google Scholar]
  4. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dammer U., Popescu O., Wagner P., Anselmetti D., Güntherodt H. J., Misevic G. N. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science. 1995 Feb 24;267(5201):1173–1175. doi: 10.1126/science.7855599. [DOI] [PubMed] [Google Scholar]
  6. De Grooth B. G., Putman C. A. High-resolution imaging of chromosome-related structures by atomic force microscopy. J Microsc. 1992 Dec;168(Pt 3):239–247. doi: 10.1111/j.1365-2818.1992.tb03266.x. [DOI] [PubMed] [Google Scholar]
  7. Diamond M. S., Springer T. A. The dynamic regulation of integrin adhesiveness. Curr Biol. 1994 Jun 1;4(6):506–517. doi: 10.1016/s0960-9822(00)00111-1. [DOI] [PubMed] [Google Scholar]
  8. Figdor C. G., van Kooyk Y., Keizer G. D. On the mode of action of LFA-1. Immunol Today. 1990 Aug;11(8):277–280. doi: 10.1016/0167-5699(90)90112-m. [DOI] [PubMed] [Google Scholar]
  9. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  10. Hansma H. G., Laney D. E., Bezanilla M., Sinsheimer R. L., Hansma P. K. Applications for atomic force microscopy of DNA. Biophys J. 1995 May;68(5):1672–1677. doi: 10.1016/S0006-3495(95)80343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haselgrübler T., Amerstorfer A., Schindler H., Gruber H. J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjug Chem. 1995 May-Jun;6(3):242–248. doi: 10.1021/bc00033a002. [DOI] [PubMed] [Google Scholar]
  12. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  13. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  15. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  16. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  17. Lub M., van Kooyk Y., Figdor C. G. Ins and outs of LFA-1. Immunol Today. 1995 Oct;16(10):479–483. doi: 10.1016/0167-5699(95)80031-x. [DOI] [PubMed] [Google Scholar]
  18. Ludwig M., Dettmann W., Gaub H. E. Atomic force microscope imaging contrast based on molecular recognition. Biophys J. 1997 Jan;72(1):445–448. doi: 10.1016/S0006-3495(97)78685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller J., Knorr R., Ferrone M., Houdei R., Carron C. P., Dustin M. L. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med. 1995 Nov 1;182(5):1231–1241. doi: 10.1084/jem.182.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  21. Putman C. A., van der Werf K. O., de Grooth B. G., van Hulst N. F., Greve J. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J. 1994 Oct;67(4):1749–1753. doi: 10.1016/S0006-3495(94)80649-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Radmacher M., Cleveland J. P., Fritz M., Hansma H. G., Hansma P. K. Mapping interaction forces with the atomic force microscope. Biophys J. 1994 Jun;66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  24. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  25. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  26. Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmidt T., Schütz G. J., Baumgartner W., Gruber H. J., Schindler H. Imaging of single molecule diffusion. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2926–2929. doi: 10.1073/pnas.93.7.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Staunton D. E., Dustin M. L., Erickson H. P., Springer T. A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990 Apr 20;61(2):243–254. doi: 10.1016/0092-8674(90)90805-o. [DOI] [PubMed] [Google Scholar]
  29. Wong J. Y., Kuhl T. L., Israelachvili J. N., Mullah N., Zalipsky S. Direct measurement of a tethered ligand-receptor interaction potential. Science. 1997 Feb 7;275(5301):820–822. doi: 10.1126/science.275.5301.820. [DOI] [PubMed] [Google Scholar]
  30. Zhang Y., Sheng S., Shao Z. Imaging biological structures with the cryo atomic force microscope. Biophys J. 1996 Oct;71(4):2168–2176. doi: 10.1016/S0006-3495(96)79418-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES