Abstract
Mechanisms underlying the surface properties of lung surfactant are extensively studied in in vitro systems such as the captive-bubble surfactometer (CBS), the pulsating-bubble surfactometer, and the Wilhelmy balance. Among these systems, the CBS is advantageous when a leakproof system and high cycling rates are required. However, widespread application of the CBS to mechanistic studies of dynamic surfactant protein-phospholipid interactions of spread film and to comparative studies between spread and adsorbed film is hampered because spreading of film is difficult. In addition, when film is formed by adsorption, the amount of material required is fairly large. We have developed an easy spreading technique that allows routine formation of film by spreading of small amounts of surfactant components at the air-water interface of an air bubble in a CBS. The technique is reliable, precise, and accurate, and the biophysical activity of film formed by spreading is similar to that of film formed by adsorption. This method will be useful for mechanistic studies of surfactant components under dynamic conditions and for comparative studies of spread films and adsorbed films.
Full Text
The Full Text of this article is available as a PDF (286.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
- Enhorning G., Shumel B., Keicher L., Sokolowski J., Holm B. A. Phospholipases introduced into the hypophase affect the surfactant film outlining a bubble. J Appl Physiol (1985) 1992 Sep;73(3):941–945. doi: 10.1152/jappl.1992.73.3.941. [DOI] [PubMed] [Google Scholar]
- Holm B. A., Keicher L., Liu M. Y., Sokolowski J., Enhorning G. Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol (1985) 1991 Jul;71(1):317–321. doi: 10.1152/jappl.1991.71.1.317. [DOI] [PubMed] [Google Scholar]
- Nag K., Perez-Gil J., Cruz A., Rich N. H., Keough K. M. Spontaneous formation of interfacial lipid-protein monolayers during adsorption from vesicles. Biophys J. 1996 Sep;71(3):1356–1363. doi: 10.1016/S0006-3495(96)79338-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
- Putz G., Goerke J., Schürch S., Clements J. A. Evaluation of pressure-driven captive bubble surfactometer. J Appl Physiol (1985) 1994 Apr;76(4):1417–1424. doi: 10.1152/jappl.1994.76.4.1417. [DOI] [PubMed] [Google Scholar]
- Putz G., Goerke J., Taeusch H. W., Clements J. A. Comparison of captive and pulsating bubble surfactometers with use of lung surfactants. J Appl Physiol (1985) 1994 Apr;76(4):1425–1431. doi: 10.1152/jappl.1994.76.4.1425. [DOI] [PubMed] [Google Scholar]
- Qanbar R., Possmayer F. On the surface activity of surfactant-associated protein C (SP-C): effects of palmitoylation and pH. Biochim Biophys Acta. 1995 Apr 6;1255(3):251–259. doi: 10.1016/0005-2760(94)00224-m. [DOI] [PubMed] [Google Scholar]
- Schoel W. M., Schürch S., Goerke J. The captive bubble method for the evaluation of pulmonary surfactant: surface tension, area, and volume calculations. Biochim Biophys Acta. 1994 Aug 18;1200(3):281–290. doi: 10.1016/0304-4165(94)90169-4. [DOI] [PubMed] [Google Scholar]
- Schürch S., Bachofen H., Goerke J., Possmayer F. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol (1985) 1989 Dec;67(6):2389–2396. doi: 10.1152/jappl.1989.67.6.2389. [DOI] [PubMed] [Google Scholar]
- Schürch S., Qanbar R., Bachofen H., Possmayer F. The surface-associated surfactant reservoir in the alveolar lining. Biol Neonate. 1995;67 (Suppl 1):61–76. doi: 10.1159/000244207. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
- Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J. 1994 Apr;66(4):1158–1166. doi: 10.1016/S0006-3495(94)80897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim Biophys Acta. 1990 Oct 1;1046(3):233–241. doi: 10.1016/0005-2760(90)90236-q. [DOI] [PubMed] [Google Scholar]
