Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2292–2301. doi: 10.1016/S0006-3495(98)77673-8

Subunit stoichiometry of a core conduction element in a cloned epithelial amiloride-sensitive Na+ channel.

B K Berdiev 1, K H Karlson 1, B Jovov 1, P J Ripoll 1, R Morris 1, D Loffing-Cueni 1, P Halpin 1, B A Stanton 1, T R Kleyman 1, I I Ismailov 1
PMCID: PMC1299903  PMID: 9788924

Abstract

The molecular composition of a core conduction element formed by the alpha-subunit of cloned epithelial Na+ channels (ENaC) was studied in planar lipid bilayers. Two pairs of in vitro translated proteins were employed in combinatorial experiments: 1) wild-type (WT) and an N-terminally truncated alphaDeltaN-rENaC that displays accelerated kinetics (tauo = 32 +/- 13 ms, tauc = 42 +/- 11 ms), as compared with the WT channel (tauc1 = 18 +/- 8 ms, tauc2 = 252 +/- 31 ms, and tauo = 157 +/- 43 ms); and 2) WT and an amiloride binding mutant, alphaDelta278-283-rENaC. The channels that formed in a alphaWT:alphaDeltaN mixture fell into two groups: one with tauo and tauc that corresponded to those exhibited by the alphaDeltaN-rENaC alone, and another with a double-exponentially distributed closed time and a single-exponentially distributed open time that corresponded to the alphaWT-rENaC alone. Five channel subtypes with distinct sensitivities to amiloride were found in a 1alphaWT:1alphaDelta278-283 protein mixture. Statistical analyses of the distributions of channel phenotypes observed for either set of the WT:mutant combinations suggest a tetrameric organization of alpha-subunits as a minimal model for the core conduction element in ENaCs.

Full Text

The Full Text of this article is available as a PDF (242.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awayda M. S., Tousson A., Benos D. J. Regulation of a cloned epithelial Na+ channel by its beta- and gamma-subunits. Am J Physiol. 1997 Dec;273(6 Pt 1):C1889–C1899. doi: 10.1152/ajpcell.1997.273.6.C1889. [DOI] [PubMed] [Google Scholar]
  2. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  3. Canessa C. M., Horisberger J. D., Rossier B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467–470. doi: 10.1038/361467a0. [DOI] [PubMed] [Google Scholar]
  4. Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
  5. Duprat F., Lesage F., Guillemare E., Fink M., Hugnot J. P., Bigay J., Lazdunski M., Romey G., Barhanin J. Heterologous multimeric assembly is essential for K+ channel activity of neuronal and cardiac G-protein-activated inward rectifiers. Biochem Biophys Res Commun. 1995 Jul 17;212(2):657–663. doi: 10.1006/bbrc.1995.2019. [DOI] [PubMed] [Google Scholar]
  6. Firsov D., Gautschi I., Merillat A. M., Rossier B. C., Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 1998 Jan 15;17(2):344–352. doi: 10.1093/emboj/17.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Firsov D., Schild L., Gautschi I., Mérillat A. M., Schneeberger E., Rossier B. C. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15370–15375. doi: 10.1073/pnas.93.26.15370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glowatzki E., Fakler G., Brändle U., Rexhausen U., Zenner H. P., Ruppersberg J. P., Fakler B. Subunit-dependent assembly of inward-rectifier K+ channels. Proc Biol Sci. 1995 Aug 22;261(1361):251–261. doi: 10.1098/rspb.1995.0145. [DOI] [PubMed] [Google Scholar]
  9. Gründer S., Firsov D., Chang S. S., Jaeger N. F., Gautschi I., Schild L., Lifton R. P., Rossier B. C. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J. 1997 Mar 3;16(5):899–907. doi: 10.1093/emboj/16.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
  11. Ismailov I. I., Awayda M. S., Berdiev B. K., Bubien J. K., Lucas J. E., Fuller C. M., Benos D. J. Triple-barrel organization of ENaC, a cloned epithelial Na+ channel. J Biol Chem. 1996 Jan 12;271(2):807–816. doi: 10.1074/jbc.271.2.807. [DOI] [PubMed] [Google Scholar]
  12. Ismailov I. I., Berdiev B. K., Shlyonsky V. G., Benos D. J. Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. Biophys J. 1997 Mar;72(3):1182–1192. doi: 10.1016/S0006-3495(97)78766-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ismailov I. I., Kieber-Emmons T., Lin C., Berdiev B. K., Shlyonsky V. G., Patton H. K., Fuller C. M., Worrell R., Zuckerman J. B., Sun W. Identification of an amiloride binding domain within the alpha-subunit of the epithelial Na+ channel. J Biol Chem. 1997 Aug 22;272(34):21075–21083. doi: 10.1074/jbc.272.34.21075. [DOI] [PubMed] [Google Scholar]
  14. Ismailov I. I., Shlyonsky V. G., Alvarez O., Benos D. J. Cation permeability of a cloned rat epithelial amiloride-sensitive Na+ channel. J Physiol. 1997 Oct 15;504(Pt 2):287–300. doi: 10.1111/j.1469-7793.1997.287be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  16. Kosari F., Sheng S., Li J., Mak D. O., Foskett J. K., Kleyman T. R. Subunit stoichiometry of the epithelial sodium channel. J Biol Chem. 1998 May 29;273(22):13469–13474. doi: 10.1074/jbc.273.22.13469. [DOI] [PubMed] [Google Scholar]
  17. Kubo Y., Baldwin T. J., Jan Y. N., Jan L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993 Mar 11;362(6416):127–133. doi: 10.1038/362127a0. [DOI] [PubMed] [Google Scholar]
  18. Lingueglia E., Voilley N., Waldmann R., Lazdunski M., Barbry P. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95–99. doi: 10.1016/0014-5793(93)81336-x. [DOI] [PubMed] [Google Scholar]
  19. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  20. Makhina E. N., Nichols C. G. Independent trafficking of KATP channel subunits to the plasma membrane. J Biol Chem. 1998 Feb 6;273(6):3369–3374. doi: 10.1074/jbc.273.6.3369. [DOI] [PubMed] [Google Scholar]
  21. McNicholas C. M., Canessa C. M. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol. 1997 Jun;109(6):681–692. doi: 10.1085/jgp.109.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Renard S., Lingueglia E., Voilley N., Lazdunski M., Barbry P. Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem. 1994 Apr 29;269(17):12981–12986. [PubMed] [Google Scholar]
  23. Schild L., Schneeberger E., Gautschi I., Firsov D. Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol. 1997 Jan;109(1):15–26. doi: 10.1085/jgp.109.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Snyder P. M., Cheng C., Prince L. S., Rogers J. C., Welsh M. J. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem. 1998 Jan 9;273(2):681–684. doi: 10.1074/jbc.273.2.681. [DOI] [PubMed] [Google Scholar]
  25. Snyder P. M., McDonald F. J., Stokes J. B., Welsh M. J. Membrane topology of the amiloride-sensitive epithelial sodium channel. J Biol Chem. 1994 Sep 30;269(39):24379–24383. [PubMed] [Google Scholar]
  26. Wischmeyer E., Döring F., Wischmeyer E., Spauschus A., Thomzig A., Veh R., Karschin A. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Mol Cell Neurosci. 1997;9(3):194–206. doi: 10.1006/mcne.1997.0614. [DOI] [PubMed] [Google Scholar]
  27. Woodward R., Stevens E. B., Murrell-Lagnado R. D. Molecular determinants for assembly of G-protein-activated inwardly rectifying K+ channels. J Biol Chem. 1997 Apr 18;272(16):10823–10830. doi: 10.1074/jbc.272.16.10823. [DOI] [PubMed] [Google Scholar]
  28. Yang J., Jan Y. N., Jan L. Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron. 1995 Dec;15(6):1441–1447. doi: 10.1016/0896-6273(95)90021-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES