Abstract
The interaction of anthracyclines (daunorubicin and idarubicin) with monolayers of zwitterionic palmitoyloleoylphosphatidylcholine (POPC) and anionic dipalmitoylphosphatidic acid (POPC-DPPA 80-20 mol%) was studied by surface pressure measurements and compared with previous results obtained with other anthracyclines (pirarubicin and adriamycin). These anthracycline/phospholipid monolayers were next transferred by a Langmuir-Blodgett technique onto planar supports and studied by surface-enhanced resonance Raman scattering (SERRS), which gave information about the orientation of anthracycline in the monolayers. On the whole, the adsorption of anthracyclines in zwitterionic monolayers increases with the anthracycline hydrophobic/hydrophilic balance, which underlines the role of the hydrophobic component of the interaction. On the contrary, the anthracyclines remain adsorbed on the polar headgroups of the phospholipids in the presence of DPPA and form a screen that limits a deeper penetration of other anthracycline molecules. To study by SERRS measurements the crossing of pirarubicin through a phospholipid bilayer used as a membrane model, asymmetrical POPC-DPPA/POPC or POPC/POPC-DPPA bilayers were transferred by the Langmuir-Schäfer method, thanks to a laboratory-built set-up, and put in contact with a pirarubicin aqueous solution. It has been shown that the presence of anionic DPPA in the first monolayer in contact with pirarubicin would limit its crossing. This limiting effet is not observed if the first monolayer is zwitterionic.
Full Text
The Full Text of this article is available as a PDF (187.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
- Burke T. G., Israel M., Seshadri R., Doroshow J. H. A fluorescence study examining how 14-valerate side chain substitution modulates anthracycline binding to small unilamellar phospholipid vesicles. Biochim Biophys Acta. 1989 Jun 26;982(1):123–130. doi: 10.1016/0005-2736(89)90182-x. [DOI] [PubMed] [Google Scholar]
- Burke T. G., Tritton T. R. Location and dynamics of anthracyclines bound to unilamellar phosphatidylcholine vesicles. Biochemistry. 1985 Oct 8;24(21):5972–5980. doi: 10.1021/bi00342a043. [DOI] [PubMed] [Google Scholar]
- Burke T. G., Tritton T. R. Structural basis of anthracycline selectivity for unilamellar phosphatidylcholine vesicles: an equilibrium binding study. Biochemistry. 1985 Mar 26;24(7):1768–1776. doi: 10.1021/bi00328a030. [DOI] [PubMed] [Google Scholar]
- Capranico G., Butelli E., Zunino F. Change of the sequence specificity of daunorubicin-stimulated topoisomerase II DNA cleavage by epimerization of the amino group of the sugar moiety. Cancer Res. 1995 Jan 15;55(2):312–317. [PubMed] [Google Scholar]
- Constantinides P. P., Inouchi N., Tritton T. R., Sartorelli A. C., Sturtevant J. M. A scanning calorimetric study of the interaction of anthracyclines with neutral and acidic phospholipids alone and in binary mixtures. J Biol Chem. 1986 Aug 5;261(22):10196–10203. [PubMed] [Google Scholar]
- Devaux P. F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991 Feb 5;30(5):1163–1173. doi: 10.1021/bi00219a001. [DOI] [PubMed] [Google Scholar]
- Dupou-Cézanne L., Sautereau A. M., Tocanne J. F. Localization of adriamycin in model and natural membranes. Influence of lipid molecular packing. Eur J Biochem. 1989 May 15;181(3):695–702. doi: 10.1111/j.1432-1033.1989.tb14779.x. [DOI] [PubMed] [Google Scholar]
- Dutta P. K., Hutt J. A. Resonance Raman spectroscopic studies of adriamycin and copper(II)-adriamycin and copper(II)-adriamycin-DNA complexes. Biochemistry. 1986 Feb 11;25(3):691–695. doi: 10.1021/bi00351a028. [DOI] [PubMed] [Google Scholar]
- Escriba P. V., Ferrer-Montiel A. V., Ferragut J. A., Gonzalez-Ros J. M. Role of membrane lipids in the interaction of daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry. 1990 Aug 7;29(31):7275–7282. doi: 10.1021/bi00483a017. [DOI] [PubMed] [Google Scholar]
- Ferrer-Montiel A. V., Gonzalez-Ros J. M., Ferragut J. A. Association of daunomycin to membrane domains studied by fluorescence resonance energy transfer. Biochim Biophys Acta. 1988 Jan 22;937(2):379–386. doi: 10.1016/0005-2736(88)90260-x. [DOI] [PubMed] [Google Scholar]
- Frézard F., Garnier-Suillerot A. Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature. Biochim Biophys Acta. 1998 Jan 5;1389(1):13–22. doi: 10.1016/s0005-2760(97)00070-2. [DOI] [PubMed] [Google Scholar]
- Gallois L., Fiallo M., Garnier-Suillerot A. Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicinol with large unilamellar vesicles. Circular dichroism study. Biochim Biophys Acta. 1998 Mar 6;1370(1):31–40. doi: 10.1016/s0005-2736(97)00241-1. [DOI] [PubMed] [Google Scholar]
- Gallois L., Fiallo M., Laigle A., Priebe W., Garnier-Suillerot A. The overall partitioning of anthracyclines into phosphatidyl-containing model membranes depends neither on the drug charge nor the presence of anionic phospholipids. Eur J Biochem. 1996 Nov 1;241(3):879–887. doi: 10.1111/j.1432-1033.1996.00879.x. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Brasseur R., Huart P., Ruysschaert J. M. Study of the adriamycin-cardiolipin complex structure using attenuated total reflection infrared spectroscopy. Biochemistry. 1987 Mar 24;26(6):1789–1794. doi: 10.1021/bi00380a043. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta. 1980 Mar 27;597(1):1–14. doi: 10.1016/0005-2736(80)90145-5. [DOI] [PubMed] [Google Scholar]
- Henry N., Fantine E. O., Bolard J., Garnier-Suillerot A. Interaction of adriamycin with negatively charged model membranes: evidence of two types of binding sites. Biochemistry. 1985 Dec 3;24(25):7085–7092. doi: 10.1021/bi00346a010. [DOI] [PubMed] [Google Scholar]
- Nabiev I. R., Morjani H., Manfait M. Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy. Eur Biophys J. 1991;19(6):311–316. doi: 10.1007/BF00183320. [DOI] [PubMed] [Google Scholar]
- Nicolay K., Sautereau A. M., Tocanne J. F., Brasseur R., Huart P., Ruysschaert J. M., de Kruijff B. A comparative model membrane study on structural effects of membrane-active positively charged anti-tumor drugs. Biochim Biophys Acta. 1988 May 24;940(2):197–208. doi: 10.1016/0005-2736(88)90195-2. [DOI] [PubMed] [Google Scholar]
- Shi Y., Zhao H., Wang C. Relative binding free energy calculations of DNA to daunomycin and its 13-dihydro analogue. Int J Biol Macromol. 1993 Aug;15(4):247–251. doi: 10.1016/0141-8130(93)90045-n. [DOI] [PubMed] [Google Scholar]
- Speelmans G., Staffhorst R. W., de Kruijff B., de Wolf F. A. Transport studies of doxorubicin in model membranes indicate a difference in passive diffusion across and binding at the outer and inner leaflets of the plasma membrane. Biochemistry. 1994 Nov 22;33(46):13761–13768. doi: 10.1021/bi00250a029. [DOI] [PubMed] [Google Scholar]
- Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Wolf F. A., Maliepaard M., van Dorsten F., Berghuis I., Nicolay K., de Kruijff B. Comparable interaction of doxorubicin with various acidic phospholipids results in changes of lipid order and dynamics. Biochim Biophys Acta. 1990 Nov 14;1096(1):67–80. doi: 10.1016/0925-4439(90)90014-g. [DOI] [PubMed] [Google Scholar]
- de Wolf F. A., Staffhorst R. W., Smits H. P., Onwezen M. F., de Kruijff B. Role of anionic phospholipids in the interaction of doxorubicin and plasma membrane vesicles: drug binding and structural consequences in bacterial systems. Biochemistry. 1993 Jul 6;32(26):6688–6695. doi: 10.1021/bi00077a023. [DOI] [PubMed] [Google Scholar]
