Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2441–2450. doi: 10.1016/S0006-3495(98)77688-X

Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.

S J Kroes 1, G W Canters 1, G Gilardi 1, A van Hoek 1, A J Visser 1
PMCID: PMC1299918  PMID: 9788939

Abstract

Time-resolved fluorescence and time resolved fluorescence anisotropy studies have been performed on wild-type azurin from Pseudomonas aeruginosa and two variants to study the mobility of Trp48. The two azurin variants in which the microenvironment of Trp48 was changed comprised the single mutations Ile7Ser and Phe110Ser. The experiments were performed on the holo-Cu(I), holo-Cu(II), and apo- forms at various pH values, viscosities, and temperatures; two distinct parts of the emission spectrum were selected for detection. Two prominent subnanosecond lifetimes in the fluorescence decays of the Cu(II) proteins could be observed. The decay of apo-azurin also consists of more than one component. The occurrence of more than one component in the fluorescence decays is explained by conformational heterogeneity. The anisotropy decay results appeared to be different for wild-type and mutated azurins. Phe110Ser and Ile7Ser azurin show more mobility of the Trp48 residue, as reflected in the order parameter.

Full Text

The Full Text of this article is available as a PDF (148.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
  2. Bastiaens P. I., van Hoek A., Benen J. A., Brochon J. C., Visser A. J. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J. 1992 Sep;63(3):839–853. doi: 10.1016/S0006-3495(92)81659-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
  4. Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
  5. Canters G. W., Gilardi G. Engineering type 1 copper sites in proteins. FEBS Lett. 1993 Jun 28;325(1-2):39–48. doi: 10.1016/0014-5793(93)81410-2. [DOI] [PubMed] [Google Scholar]
  6. Corin A. F., Bersohn R., Cole P. E. pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer. Biochemistry. 1983 Apr 12;22(8):2032–2038. doi: 10.1021/bi00277a046. [DOI] [PubMed] [Google Scholar]
  7. Dorovska-Taran V. N., Veeger C., Visser A. J. Comparison of the dynamic structure of alpha-chymotrypsin in aqueous solution and in reversed micelles by fluorescent active-site probing. Eur J Biochem. 1993 Jan 15;211(1-2):47–55. doi: 10.1111/j.1432-1033.1993.tb19868.x. [DOI] [PubMed] [Google Scholar]
  8. Finazzi-Agrò A., Rotilio G., Avigliano L., Guerrieri P., Boffi V., Mondovì B. Environment of copper in Pseudomonas fluorescens azurin: fluorometric approach. Biochemistry. 1970 Apr 28;9(9):2009–2014. doi: 10.1021/bi00811a023. [DOI] [PubMed] [Google Scholar]
  9. Gilardi G., Mei G., Rosato N., Canters G. W., Finazzi-Agrò A. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy. Biochemistry. 1994 Feb 15;33(6):1425–1432. doi: 10.1021/bi00172a020. [DOI] [PubMed] [Google Scholar]
  10. Grinvald A., Schlessinger J., Pecht I., Steinberg I. Z. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization. Biochemistry. 1975 May 6;14(9):1921–1929. doi: 10.1021/bi00680a018. [DOI] [PubMed] [Google Scholar]
  11. Hammann C., Messerschmidt A., Huber R., Nar H., Gilardi G., Canters G. W. X-ray crystal structure of the two site-specific mutants Ile7Ser and Phe110Ser of azurin from Pseudomonas aeruginosa. J Mol Biol. 1996 Jan 26;255(3):362–366. doi: 10.1006/jmbi.1996.0029. [DOI] [PubMed] [Google Scholar]
  12. Hansen J. E., Longworth J. W., Fleming G. R. Photophysics of metalloazurins. Biochemistry. 1990 Aug 7;29(31):7329–7338. doi: 10.1021/bi00483a024. [DOI] [PubMed] [Google Scholar]
  13. Hansen J. E., Steel D. G., Gafni A. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence. Biophys J. 1996 Oct;71(4):2138–2143. doi: 10.1016/S0006-3495(96)79414-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hutnik C. M., Szabo A. G. A time-resolved fluorescence study of azurin and metalloazurin derivatives. Biochemistry. 1989 May 2;28(9):3935–3939. doi: 10.1021/bi00435a046. [DOI] [PubMed] [Google Scholar]
  15. Hutnik C. M., Szabo A. G. Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity. Biochemistry. 1989 May 2;28(9):3923–3934. doi: 10.1021/bi00435a045. [DOI] [PubMed] [Google Scholar]
  16. Kim S. J., Chowdhury F. N., Stryjewski W., Younathan E. S., Russo P. S., Barkley M. D. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase. Biophys J. 1993 Jul;65(1):215–226. doi: 10.1016/S0006-3495(93)81070-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lakowicz J. R., Keating-Nakamoto S. Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry. 1984 Jun 19;23(13):3013–3021. doi: 10.1021/bi00308a026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leenders R., Kooijman M., van Hoek A., Veeger C., Visser A. J. Flavin dynamics in reduced flavodoxins. A time-resolved polarized fluorescence study. Eur J Biochem. 1993 Jan 15;211(1-2):37–45. doi: 10.1111/j.1432-1033.1993.tb19867.x. [DOI] [PubMed] [Google Scholar]
  20. Livesey A. K., Brochon J. C. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J. 1987 Nov;52(5):693–706. doi: 10.1016/S0006-3495(87)83264-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mei G., Gilardi G., Venanzi M., Rosato N., Canters G. W., Agró A. F. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Protein Sci. 1996 Nov;5(11):2248–2254. doi: 10.1002/pro.5560051111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. J Mol Biol. 1991 Oct 5;221(3):765–772. doi: 10.1016/0022-2836(91)80173-r. [DOI] [PubMed] [Google Scholar]
  24. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. X-ray crystal structure of the two site-specific mutants His35Gln and His35Leu of azurin from Pseudomonas aeruginosa. J Mol Biol. 1991 Mar 20;218(2):427–447. doi: 10.1016/0022-2836(91)90723-j. [DOI] [PubMed] [Google Scholar]
  25. Pap E. H., Bastiaens P. I., Borst J. W., van den Berg P. A., van Hoek A., Snoek G. T., Wirtz K. W., Visser A. J. Quantitation of the interaction of protein kinase C with diacylglycerol and phosphoinositides by time-resolved detection of resonance energy transfer. Biochemistry. 1993 Dec 7;32(48):13310–13317. doi: 10.1021/bi00211a044. [DOI] [PubMed] [Google Scholar]
  26. Petrich J. W., Longworth J. W., Fleming G. R. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Biochemistry. 1987 May 19;26(10):2711–2722. doi: 10.1021/bi00384a010. [DOI] [PubMed] [Google Scholar]
  27. Szabo A. G., Stepanik T. M., Wayner D. M., Young N. M. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study. Biophys J. 1983 Mar;41(3):233–244. doi: 10.1016/S0006-3495(83)84433-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van de Kamp M., Hali F. C., Rosato N., Agro A. F., Canters G. W. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli. Biochim Biophys Acta. 1990 Sep 19;1019(3):283–292. doi: 10.1016/0005-2728(90)90206-j. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES