Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2504–2507. doi: 10.1016/S0006-3495(98)77694-5

Enzyme activity below the dynamical transition at 220 K.

R M Daniel 1, J C Smith 1, M Ferrand 1, S Héry 1, R Dunn 1, J L Finney 1
PMCID: PMC1299924  PMID: 9788945

Abstract

Enzyme activity requires the activation of anharmonic motions, such as jumps between potential energy wells. However, in general, the forms and time scales of the functionally important anharmonic dynamics coupled to motion along the reaction coordinate remain to be determined. In particular, the question arises whether the temperature-dependent dynamical transition from harmonic to anharmonic motion in proteins, which has been observed experimentally and using molecular dynamics simulation, involves the activation of motions required for enzyme function. Here we present parallel measurements of the activity and dynamics of a cryosolution of glutamate dehydrogenase as a function of temperature. The dynamical atomic fluctuations faster than approximately 100 ps were determined using neutron scattering. The results show that the enzyme remains active below the dynamical transition observed at approximately 220 K, i.e., at temperatures where no anharmonic motion is detected. Furthermore, the activity shows no significant deviation from Arrhenius behavior down to 190 K. The results indicate that the observed transition in the enzyme's dynamics is decoupled from the rate-limiting step along the reaction coordinate.

Full Text

The Full Text of this article is available as a PDF (41.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artymiuk P. J., Blake C. C., Grace D. E., Oatley S. J., Phillips D. C., Sternberg M. J. Crystallographic studies of the dynamic properties of lysozyme. Nature. 1979 Aug 16;280(5723):563–568. doi: 10.1038/280563a0. [DOI] [PubMed] [Google Scholar]
  2. Cusack S., Smith J., Finney J., Tidor B., Karplus M. Inelastic neutron scattering analysis of picosecond internal protein dynamics. Comparison of harmonic theory with experiment. J Mol Biol. 1988 Aug 20;202(4):903–908. doi: 10.1016/0022-2836(88)90566-9. [DOI] [PubMed] [Google Scholar]
  3. Daniel R. M., Dines M., Petach H. H. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996 Jul 1;317(Pt 1):1–11. doi: 10.1042/bj3170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  5. Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
  6. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  8. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  9. Gerstein M., Lesk A. M., Chothia C. Structural mechanisms for domain movements in proteins. Biochemistry. 1994 Jun 7;33(22):6739–6749. doi: 10.1021/bi00188a001. [DOI] [PubMed] [Google Scholar]
  10. Hudson R. C., Daniel R. M. L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993 Dec;106(4):767–792. doi: 10.1016/0305-0491(93)90031-y. [DOI] [PubMed] [Google Scholar]
  11. Hudson R. C., Daniel R. M. Steady state kinetics of the glutamate dehydrogenase from an archaebacterial extreme thermophile, isolate AN1. Biochim Biophys Acta. 1995 Jul 3;1250(1):60–68. doi: 10.1016/0167-4838(95)00043-t. [DOI] [PubMed] [Google Scholar]
  12. Hudson R. C., Ruttersmith L. D., Daniel R. M. Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochim Biophys Acta. 1993 Oct 6;1202(2):244–250. doi: 10.1016/0167-4838(93)90011-f. [DOI] [PubMed] [Google Scholar]
  13. Jaenicke R., Závodszky P. Proteins under extreme physical conditions. FEBS Lett. 1990 Aug 1;268(2):344–349. doi: 10.1016/0014-5793(90)81283-t. [DOI] [PubMed] [Google Scholar]
  14. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  15. Kneller G. R., Smith J. C. Liquid-like side-chain dynamics in myoglobin. J Mol Biol. 1994 Sep 23;242(3):181–185. doi: 10.1006/jmbi.1994.1570. [DOI] [PubMed] [Google Scholar]
  16. More N., Daniel R. M., Petach H. H. The effect of low temperatures on enzyme activity. Biochem J. 1995 Jan 1;305(Pt 1):17–20. doi: 10.1042/bj3050017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  18. YANKEELOV J. A., Jr, KOSHLAND D. E., Jr EVIDENCE FOR CONFORMATION CHANGES INDUCED BY SUBSTRATES OF PHOSPHOGLUCOMUTASE. J Biol Chem. 1965 Apr;240:1593–1602. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES