Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2532–2546. doi: 10.1016/S0006-3495(98)77698-2

Dynamics and ordering in mixed model membranes of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine: a 250-GHz electron spin resonance study using cholestane.

J P Barnes 1, J H Freed 1
PMCID: PMC1299928  PMID: 9788949

Abstract

We report here on a 250-GHz electron spin resonance (ESR) study of macroscopically aligned model membranes composed of mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS), utilizing the nixtroxide-labeled cholesterol analog cholestane (CSL). Two clearly resolved spectral components, distinct in both their ordering and dynamics, are resolved. The major component in membranes composed mostly of DMPC shows typical characteristics, with the long axis of CSL parallel to the bilayer normal with slow (10(6) </= R </= 10(7) s-1) rotational diffusion rates, as expected for cholesterol. The second component grows in as the mole fraction of DMPS increases. A detailed analysis shows that CSL senses a local, strongly biaxial environment. Our results imply that the inefficient packing between cholesterol and DMPS occurs probably because of the strong interactions between the PS headgroups, which provide the local biaxiality. Such a packing of the headgroups has been predicted by molecular dynamics simulations but had not been observed experimentally. The analysis of these spectral components was greatly aided by the excellent orientational resolution provided by the 250-GHz spectra. This enabled the key qualitative features of this interpretation to be "read" off the spectra before the detailed analysis.

Full Text

The Full Text of this article is available as a PDF (199.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asher S. A., Pershan P. S. Alignment and defect structures in oriented phosphatidylcholine multilayers. Biophys J. 1979 Sep;27(3):393–421. doi: 10.1016/S0006-3495(79)85225-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balvers W. G., Boersma M. G., Vervoort J., Ouwehand A., Rietjens I. M. A specific interaction between NADPH-cytochrome reductase and phosphatidylserine and phosphatidylinositol. Eur J Biochem. 1993 Dec 15;218(3):1021–1029. doi: 10.1111/j.1432-1033.1993.tb18461.x. [DOI] [PubMed] [Google Scholar]
  3. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  4. Brasaemle D. L., Robertson A. D., Attie A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res. 1988 Apr;29(4):481–489. [PubMed] [Google Scholar]
  5. Brumm T., Möps A., Dolainsky C., Brückner S., Bayerl T. M. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects. Biophys J. 1992 Apr;61(4):1018–1024. doi: 10.1016/S0006-3495(92)81909-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark N. A., Rothschild K. J., Luippold D. A., Simon B. A. Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J. 1980 Jul;31(1):65–96. doi: 10.1016/S0006-3495(80)85041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dreger M., Krauss M., Herrmann A., Hucho F. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry. 1997 Jan 28;36(4):839–847. doi: 10.1021/bi960666z. [DOI] [PubMed] [Google Scholar]
  8. Earle K. A., Moscicki J. K., Ge M., Budil D. E., Freed J. H. 250-GHz electron spin resonance studies of polarity gradients along the aliphatic chains in phospholipid membranes. Biophys J. 1994 Apr;66(4):1213–1221. doi: 10.1016/S0006-3495(94)80905-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feigenson G. W. Calcium ion binding between lipid bilayers: the four-component system of phosphatidylserine, phosphatidylcholine, calcium chloride, and water. Biochemistry. 1989 Feb 7;28(3):1270–1278. doi: 10.1021/bi00429a048. [DOI] [PubMed] [Google Scholar]
  10. Ge M., Budil D. E., Freed J. H. An electron spin resonance study of interactions between phosphatidylcholine and phosphatidylserine in oriented membranes. Biophys J. 1994 May;66(5):1515–1521. doi: 10.1016/S0006-3495(94)80942-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ge M., Budil D. E., Freed J. H. ESR studies of spin-labeled membranes aligned by isopotential spin-dry ultracentrifugation: lipid-protein interactions. Biophys J. 1994 Dec;67(6):2326–2344. doi: 10.1016/S0006-3495(94)80719-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ge M., Freed J. H. Polarity profiles in oriented and dispersed phosphatidylcholine bilayers are different: an electron spin resonance study. Biophys J. 1998 Feb;74(2 Pt 1):910–917. doi: 10.1016/S0006-3495(98)74014-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hauser H., Shipley G. G. Interactions of monovalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1983 Apr 26;22(9):2171–2178. doi: 10.1021/bi00278a018. [DOI] [PubMed] [Google Scholar]
  14. Heimburg T., Marsh D. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes. Biophys J. 1995 Feb;68(2):536–546. doi: 10.1016/S0006-3495(95)80215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hinderliter A. K., Huang J., Feigenson G. W. Detection of phase separation in fluid phosphatidylserine/phosphatidylcholine mixtures. Biophys J. 1994 Nov;67(5):1906–1911. doi: 10.1016/S0006-3495(94)80673-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  17. Kar L., Ney-Igner E., Freed J. H. Electron spin resonance and electron-spin-echo study of oriented multilayers of L alpha-dipalmitoylphosphatidylcholine water systems. Biophys J. 1985 Oct;48(4):569–595. doi: 10.1016/S0006-3495(85)83814-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kleinschmidt J. H., Marsh D. Spin-label electron spin resonance studies on the interactions of lysine peptides with phospholipid membranes. Biophys J. 1997 Nov;73(5):2546–2555. doi: 10.1016/S0006-3495(97)78283-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kohler S. J., Klein M. P. Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors. Biochemistry. 1977 Feb 8;16(3):519–526. doi: 10.1021/bi00622a028. [DOI] [PubMed] [Google Scholar]
  20. López Cascales J. J., García de la Torre J. Effect of lithium and sodium ions on a charged membrane of dipalmitoylphosphatidylserine: a study by molecular dynamics simulation. Biochim Biophys Acta. 1997 Dec 4;1330(2):145–156. doi: 10.1016/s0005-2736(97)00156-9. [DOI] [PubMed] [Google Scholar]
  21. Marriott T. B., Birrell G. B., Griffith O. H. Assignment of the configuration of the steroid spin label, 3-doxyl-5alpha-cholestane. J Am Chem Soc. 1975 Feb 5;97(3):627–630. doi: 10.1021/ja00836a026. [DOI] [PubMed] [Google Scholar]
  22. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  23. McMullen T. P., McElhaney R. N. Differential scanning calorimetric studies of the interaction of cholesterol with distearoyl and dielaidoyl molecular species of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Biochemistry. 1997 Apr 22;36(16):4979–4986. doi: 10.1021/bi962815j. [DOI] [PubMed] [Google Scholar]
  24. Mitchell D. C., Litman B. J. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J. 1998 Feb;74(2 Pt 1):879–891. doi: 10.1016/S0006-3495(98)74011-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mou J., Czajkowsky D. M., Shao Z. Gramicidin A aggregation in supported gel state phosphatidylcholine bilayers. Biochemistry. 1996 Mar 12;35(10):3222–3226. doi: 10.1021/bi9520242. [DOI] [PubMed] [Google Scholar]
  26. Patyal B. R., Crepeau R. H., Freed J. H. Lipid-gramicidin interactions using two-dimensional Fourier-transform electron spin resonance. Biophys J. 1997 Oct;73(4):2201–2220. doi: 10.1016/S0006-3495(97)78252-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Powers L., Clark N. A. Preparation of large monodomain phospholipid bilayer smectic liquid crystals. Proc Natl Acad Sci U S A. 1975 Mar;72(3):840–843. doi: 10.1073/pnas.72.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Recktenwald D. J., McConnell H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1981 Jul 21;20(15):4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
  29. Roux M., Bloom M. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry. 1990 Jul 31;29(30):7077–7089. doi: 10.1021/bi00482a019. [DOI] [PubMed] [Google Scholar]
  30. Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
  31. Sanson A., Monck M. A., Neumann J. M. 2D 1H-NMR conformational study of phosphatidylserine diluted in perdeuterated dodecylphosphocholine micelles. Evidence for a pH-induced conformational transition. Biochemistry. 1995 May 2;34(17):5938–5944. doi: 10.1021/bi00017a023. [DOI] [PubMed] [Google Scholar]
  32. Shin Y. K., Budil D. E., Freed J. H. Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water. Biophys J. 1993 Sep;65(3):1283–1294. doi: 10.1016/S0006-3495(93)81160-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shin Y. K., Freed J. H. Thermodynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state studied by the orientational order parameter. Biophys J. 1989 Dec;56(6):1093–1100. doi: 10.1016/S0006-3495(89)82757-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silvius J. R. Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry. 1992 Apr 7;31(13):3398–3408. doi: 10.1021/bi00128a014. [DOI] [PubMed] [Google Scholar]
  35. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  36. Sintes T., Baumgärtner A. Protein attraction in membranes induced by lipid fluctuations. Biophys J. 1997 Nov;73(5):2251–2259. doi: 10.1016/S0006-3495(97)78257-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Speyer J. B., Sripada P. K., Das Gupta S. K., Shipley G. G., Griffin R. G. Magnetic orientation of sphingomyelin-lecithin bilayers. Biophys J. 1987 Apr;51(4):687–691. doi: 10.1016/S0006-3495(87)83394-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF. Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4665–4676. doi: 10.1103/physreve.49.4665. [DOI] [PubMed] [Google Scholar]
  39. Takahashi H., Ohmae H., Hatta I. Trehalose-induced destabilization of interdigitated gel phase in dihexadecylphosphatidylcholine. Biophys J. 1997 Dec;73(6):3030–3038. doi: 10.1016/S0006-3495(97)78331-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tokutomi S., Ohki K., Ohnishi S. I. Proton-induced phase separation in phosphatidylserine/phosphatidylcholine membranes. Biochim Biophys Acta. 1980 Feb 28;596(2):192–200. doi: 10.1016/0005-2736(80)90354-5. [DOI] [PubMed] [Google Scholar]
  41. Vergères G., Manenti S., Weber T., Stürzinger C. The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J Biol Chem. 1995 Aug 25;270(34):19879–19887. doi: 10.1074/jbc.270.34.19879. [DOI] [PubMed] [Google Scholar]
  42. Wachtel E. J., Borochov N., Bach D. The effect of protons or calcium ions on the phase behavior of phosphatidylserine-cholesterol mixtures. Biochim Biophys Acta. 1991 Jul 1;1066(1):63–69. doi: 10.1016/0005-2736(91)90251-3. [DOI] [PubMed] [Google Scholar]
  43. Yang L., Glaser M. Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry. 1995 Feb 7;34(5):1500–1506. doi: 10.1021/bi00005a005. [DOI] [PubMed] [Google Scholar]
  44. Yeagle P. L., Albert A. D., Boesze-Battaglia K., Young J., Frye J. Cholesterol dynamics in membranes. Biophys J. 1990 Mar;57(3):413–424. doi: 10.1016/S0006-3495(90)82558-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES