Abstract
Antigen-antibody systems provide the flexibility of varying the kinetics and affinity of molecular interaction and studying the resulting effect on adhesion. In a parallel-plate flow chamber, we measured the extent and rate of adhesion of rat basophilic leukemia cells preincubated with anti-dinitrophenyl IgE clones SPE-7 or H1 26. 82 to dinitrophenyl-coated polyacrylamide gel substrates in a linear shear field. Both of these IgEs bind dinitrophenyl, but H1 26.82 has a 10-fold greater on rate and a 30-fold greater affinity. Adhesion was found to be binary; cells either arrested irreversibly or continued at their unencumbered hydrodynamic velocity. Under identical conditions, more adhesion was seen with the higher affinity (higher on rate) IgE clone. At some shear rates, adhesion was robust with H1 26.82, but negligible with SPE-7. Reduction in receptor number or ligand density reduced the maximum level of adhesion seen at any shear rate, but did not decrease the shear rate at which adhesion was first observed. The spatial pattern of adhesion for both IgE clones is well represented by the first-order kinetic rate constant kad, and we have determined how kad depends on ligand and receptor densities and shear rate. The rate constant kad found with H1 26.82 was approximately fivefold greater than with SPE-7. The dependence of kad on site density and shear rate for SPE-7 is complex: kad increases linearly with antigen site density at low to moderate shear rates, but is insensitive to site density at high shear. kad increases with shear rate at low site density but decreases with shear at high site density. With H1 26.82, the functional dependence of kad with shear rate was similar. Although these data are consistent with the hypothesis that we have sampled both transport and reaction-limited adhesion regimes, they point out deficiencies in current theories describing cell attachment under flow.
Full Text
The Full Text of this article is available as a PDF (289.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
- Atherton A., Born G. V. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol. 1972 Apr;222(2):447–474. doi: 10.1113/jphysiol.1972.sp009808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981 Apr;11(4):317–323. doi: 10.1002/eji.1830110410. [DOI] [PubMed] [Google Scholar]
- Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
- Brunk D. K., Goetz D. J., Hammer D. A. Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J. 1996 Nov;71(5):2902–2907. doi: 10.1016/S0006-3495(96)79487-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doré M., Korthuis R. J., Granger D. N., Entman M. L., Smith C. W. P-selectin mediates spontaneous leukocyte rolling in vivo. Blood. 1993 Aug 15;82(4):1308–1316. [PubMed] [Google Scholar]
- Erickson J. W., Posner R. G., Goldstein B., Holowka D., Baird B. Bivalent ligand dissociation kinetics from receptor-bound immunoglobulin E: evidence for a time-dependent increase in ligand rebinding at the cell surface. Biochemistry. 1991 Mar 5;30(9):2357–2363. doi: 10.1021/bi00223a009. [DOI] [PubMed] [Google Scholar]
- Erickson J., Goldstein B., Holowka D., Baird B. The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. Biophys J. 1987 Oct;52(4):657–662. doi: 10.1016/S0006-3495(87)83258-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson J., Kane P., Goldstein B., Holowka D., Baird B. Cross-linking of IgE-receptor complexes at the cell surface: a fluorescence method for studying the binding of monovalent and bivalent haptens to IgE. Mol Immunol. 1986 Jul;23(7):769–781. doi: 10.1016/0161-5890(86)90089-1. [DOI] [PubMed] [Google Scholar]
- Finger E. B., Puri K. D., Alon R., Lawrence M. B., von Andrian U. H., Springer T. A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996 Jan 18;379(6562):266–269. doi: 10.1038/379266a0. [DOI] [PubMed] [Google Scholar]
- Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kansas G. S. Selectins and their ligands: current concepts and controversies. Blood. 1996 Nov 1;88(9):3259–3287. [PubMed] [Google Scholar]
- Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
- Ley K., Tedder T. F., Kansas G. S. L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin. Blood. 1993 Sep 1;82(5):1632–1638. [PubMed] [Google Scholar]
- Metzger H., Alcaraz G., Hohman R., Kinet J. P., Pribluda V., Quarto R. The receptor with high affinity for immunoglobulin E. Annu Rev Immunol. 1986;4:419–470. doi: 10.1146/annurev.iy.04.040186.002223. [DOI] [PubMed] [Google Scholar]
- Oliver J. M., Seagrave J., Stump R. F., Pfeiffer J. R., Deanin G. G. Signal transduction and cellular response in RBL-2H3 mast cells. Prog Allergy. 1988;42:185–245. [PubMed] [Google Scholar]
- Pauli B. U., Augustin-Voss H. G., el-Sabban M. E., Johnson R. C., Hammer D. A. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 1990 Nov;9(3):175–189. doi: 10.1007/BF00046359. [DOI] [PubMed] [Google Scholar]
- Pless D. D., Lee Y. C., Roseman S., Schnaar R. L. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J Biol Chem. 1983 Feb 25;258(4):2340–2349. [PubMed] [Google Scholar]
- Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
- Taurog J. D., Fewtrell C., Becker E. L. IgE mediated triggering of rat basophil leukemia cells: lack of evidence for serine esterase activation. J Immunol. 1979 Jun;122(6):2150–2153. [PubMed] [Google Scholar]
- Tempelman L. A., Hammer D. A. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow. Biophys J. 1994 Apr;66(4):1231–1243. doi: 10.1016/S0006-3495(94)80907-5. [DOI] [PMC free article] [PubMed] [Google Scholar]