Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2615–2625. doi: 10.1016/S0006-3495(98)77707-0

Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium.

Y Jiang 1, H Levine 1, J Glazier 1
PMCID: PMC1299937  PMID: 9826586

Abstract

In the mound stage of Dictyostelium discoideum, pre-stalk cells sort and form a tip at the apex. How this pattern forms is as yet unknown. A cellular level model allows us to simulate both differential cell adhesion and chemotaxis, to show that with differential adhesion only, pre-stalk cells move to the surface of the mound but form no tip. With chemotaxis driven by an outgoing circular wave only, a tip forms but contains both pre-stalk and pre-spore cells. Only for a narrow range of relative strengths between differential adhesion and chemotaxis can both mechanisms work in concert to form a tip containing only pre-stalk cells. The simulations provide a method to determine the processes necessary for patterning and suggest a series of further experiments.

Full Text

The Full Text of this article is available as a PDF (521.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bozzaro S., Ponte E. Cell adhesion in the life cycle of Dictyostelium. Experientia. 1995 Dec 18;51(12):1175–1188. doi: 10.1007/BF01944735. [DOI] [PubMed] [Google Scholar]
  2. Caterina M. J., Devreotes P. N. Molecular insights into eukaryotic chemotaxis. FASEB J. 1991 Dec;5(15):3078–3085. [PubMed] [Google Scholar]
  3. Doolittle K. W., Reddy I., McNally J. G. 3D analysis of cell movement during normal and myosin-II-null cell morphogenesis in dictyostelium. Dev Biol. 1995 Jan;167(1):118–129. doi: 10.1006/dbio.1995.1011. [DOI] [PubMed] [Google Scholar]
  4. Fisher P. R., Merkl R., Gerisch G. Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J Cell Biol. 1989 Mar;108(3):973–984. doi: 10.1083/jcb.108.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foty R. A., Pfleger C. M., Forgacs G., Steinberg M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 1996 May;122(5):1611–1620. doi: 10.1242/dev.122.5.1611. [DOI] [PubMed] [Google Scholar]
  6. Glazier JA, Graner F. Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Mar;47(3):2128–2154. doi: 10.1103/physreve.47.2128. [DOI] [PubMed] [Google Scholar]
  7. Goldstein RE. Traveling-Wave Chemotaxis. Phys Rev Lett. 1996 Jul 22;77(4):775–778. doi: 10.1103/PhysRevLett.77.775. [DOI] [PubMed] [Google Scholar]
  8. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett. 1992 Sep 28;69(13):2013–2016. doi: 10.1103/PhysRevLett.69.2013. [DOI] [PubMed] [Google Scholar]
  9. Kessler DA, Levine H. Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Dec;48(6):4801–4804. doi: 10.1103/physreve.48.4801. [DOI] [PubMed] [Google Scholar]
  10. Loomis W. F. Lateral inhibition and pattern formation in Dictyostelium. Curr Top Dev Biol. 1993;28:1–46. doi: 10.1016/s0070-2153(08)60208-2. [DOI] [PubMed] [Google Scholar]
  11. Mombach JC, Glazier JA. Single cell motion in aggregates of embryonic cells. Phys Rev Lett. 1996 Apr 15;76(16):3032–3035. doi: 10.1103/PhysRevLett.76.3032. [DOI] [PubMed] [Google Scholar]
  12. Rietdorf J., Siegert F., Weijer C. J. Analysis of optical density wave propagation and cell movement during mound formation in Dictyostelium discoideum. Dev Biol. 1996 Aug 1;177(2):427–438. doi: 10.1006/dbio.1996.0175. [DOI] [PubMed] [Google Scholar]
  13. Rubin J., Robertson A. The tip of the Dictyostelium discoideum pseudoplasmodium as an organizer. J Embryol Exp Morphol. 1975 Feb;33(1):227–241. [PubMed] [Google Scholar]
  14. STEINBERG M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963 Aug 2;141(3579):401–408. doi: 10.1126/science.141.3579.401. [DOI] [PubMed] [Google Scholar]
  15. Saxe C. L., 3rd, Ginsburg G. T., Louis J. M., Johnson R., Devreotes P. N., Kimmel A. R. CAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Dev. 1993 Feb;7(2):262–272. doi: 10.1101/gad.7.2.262. [DOI] [PubMed] [Google Scholar]
  16. Shaulsky G., Kuspa A., Loomis W. F. A multidrug resistance transporter/serine protease gene is required for prestalk specialization in Dictyostelium. Genes Dev. 1995 May 1;9(9):1111–1122. doi: 10.1101/gad.9.9.1111. [DOI] [PubMed] [Google Scholar]
  17. Siegert F., Weijer C. J. Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr Biol. 1995 Aug 1;5(8):937–943. doi: 10.1016/s0960-9822(95)00184-9. [DOI] [PubMed] [Google Scholar]
  18. Siu C. H., Des Roches B., Lam T. Y. Involvement of a cell-surface glycoprotein in the cell-sorting process of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6596–6600. doi: 10.1073/pnas.80.21.6596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takeuchi I., Kakutani T., Tasaka M. Cell behavior during formation of prestalk/prespore pattern in submerged agglomerates of Dictyostelium discoideum. Dev Genet. 1988;9(4-5):607–614. doi: 10.1002/dvg.1020090437. [DOI] [PubMed] [Google Scholar]
  20. Tasaka M., Takeuchi I. Role of cell sorting in pattern formation in Dictyostelium discoideum. Differentiation. 1981;18(3):191–196. doi: 10.1111/j.1432-0436.1981.tb01122.x. [DOI] [PubMed] [Google Scholar]
  21. Traynor D., Kessin R. H., Williams J. G. Chemotactic sorting to cAMP in the multicellular stages of Dictyostelium development. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8303–8307. doi: 10.1073/pnas.89.17.8303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Varnum B., Edwards K. B., Soll D. R. The developmental regulation of single-cell motility in Dictyostelium discoideum. Dev Biol. 1986 Jan;113(1):218–227. doi: 10.1016/0012-1606(86)90124-7. [DOI] [PubMed] [Google Scholar]
  23. Wang B., Kuspa A. Dictyostelium development in the absence of cAMP. Science. 1997 Jul 11;277(5323):251–254. doi: 10.1126/science.277.5323.251. [DOI] [PubMed] [Google Scholar]
  24. Wessels D., Murray J., Soll D. R. Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil Cytoskeleton. 1992;23(2):145–156. doi: 10.1002/cm.970230207. [DOI] [PubMed] [Google Scholar]
  25. Williams J. G. Regulation of cellular differentiation during Dictyostelium morphogenesis. Curr Opin Genet Dev. 1991 Oct;1(3):358–362. doi: 10.1016/s0959-437x(05)80300-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES