Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2626–2636. doi: 10.1016/S0006-3495(98)77708-2

Local rules simulation of the kinetics of virus capsid self-assembly.

R Schwartz 1, P W Shor 1, P E Prevelige Jr 1, B Berger 1
PMCID: PMC1299938  PMID: 9826587

Abstract

A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.

Full Text

The Full Text of this article is available as a PDF (263.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger B., Shor P. W., Tucker-Kellogg L., King J. Local rule-based theory of virus shell assembly. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7732–7736. doi: 10.1073/pnas.91.16.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  3. Caspar D. L. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys J. 1980 Oct;32(1):103–138. doi: 10.1016/S0006-3495(80)84929-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dokland T., Lindqvist B. H., Fuller S. D. Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacteriophage system. EMBO J. 1992 Mar;11(3):839–846. doi: 10.1002/j.1460-2075.1992.tb05121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Earnshaw W., King J. Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. J Mol Biol. 1978 Dec 25;126(4):721–747. doi: 10.1016/0022-2836(78)90017-7. [DOI] [PubMed] [Google Scholar]
  6. Galisteo M. L., King J. Conformational transformations in the protein lattice of phage P22 procapsids. Biophys J. 1993 Jul;65(1):227–235. doi: 10.1016/S0006-3495(93)81073-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson J. E., Speir J. A. Quasi-equivalent viruses: a paradigm for protein assemblies. J Mol Biol. 1997 Jun 27;269(5):665–675. doi: 10.1006/jmbi.1997.1068. [DOI] [PubMed] [Google Scholar]
  9. Katsura I. Structure and inherent properties of the bacteriophage lambda head shell. IV. Small-head mutants. J Mol Biol. 1983 Dec 15;171(3):297–317. doi: 10.1016/0022-2836(83)90095-5. [DOI] [PubMed] [Google Scholar]
  10. Marzec C. J., Day L. A. Pattern formation in icosahedral virus capsids: the papova viruses and Nudaurelia capensis beta virus. Biophys J. 1993 Dec;65(6):2559–2577. doi: 10.1016/S0006-3495(93)81313-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prevelige P. E., Jr, King J., Silva J. L. Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J. 1994 May;66(5):1631–1641. doi: 10.1016/S0006-3495(94)80955-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prevelige P. E., Jr, Thomas D., King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J. 1993 Mar;64(3):824–835. doi: 10.1016/S0006-3495(93)81443-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reddy V. S., Giesing H. A., Morton R. T., Kumar A., Post C. B., Brooks C. L., 3rd, Johnson J. E. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys J. 1998 Jan;74(1):546–558. doi: 10.1016/S0006-3495(98)77813-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rossmann M. G. Constraints on the assembly of spherical virus particles. Virology. 1984 Apr 15;134(1):1–11. doi: 10.1016/0042-6822(84)90267-8. [DOI] [PubMed] [Google Scholar]
  15. Steven A. C., Greenstone H. L., Booy F. P., Black L. W., Ross P. D. Conformational changes of a viral capsid protein. Thermodynamic rationale for proteolytic regulation of bacteriophage T4 capsid expansion, co-operativity, and super-stabilization by soc binding. J Mol Biol. 1992 Dec 5;228(3):870–884. doi: 10.1016/0022-2836(92)90871-g. [DOI] [PubMed] [Google Scholar]
  16. Tarnai T., Gáspár Z., Szalai L. Pentagon packing models for "all-pentamer" virus structures. Biophys J. 1995 Aug;69(2):612–618. doi: 10.1016/S0006-3495(95)79938-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thuman-Commike P. A., Greene B., Malinski J. A., King J., Chiu W. Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. Biophys J. 1998 Jan;74(1):559–568. doi: 10.1016/S0006-3495(98)77814-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zlotnick A. To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J Mol Biol. 1994 Aug 5;241(1):59–67. doi: 10.1006/jmbi.1994.1473. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES