Abstract
A theoretical study to identify the conformational preferences of lysine-based oligopeptides has been carried out. The solvation free energy and free energy of ionization of the oligopeptides have been calculated by using a fast multigrid boundary element method that considers the coupling between the conformation of the molecule and the ionization equilibria explicitly, at a given pH value. It has been found experimentally that isolated alanine and lysine residues have somewhat small intrinsic helix-forming tendencies; however, results from these simulations indicate that conformations containing right-handed alpha-helical turns are energetically favorable at low values of pH for lysine-based oligopeptides. Also, unusual patterns of interactions among lysine side chains with large hydrophobic contacts and close proximity (5-6 A) between charged NH3+ groups are observed. Similar arrangements of charged groups have been seen for lysine and arginine residues in experimentally determined structures of proteins available from the Protein Data Bank. The lowest-free-energy conformation of the sequence Ac-(LYS)6-NMe from these simulations showed large pKalpha shifts for some of the NH3+ groups of the lysine residues. Such large effects are not observed in the lowest-energy conformations of oligopeptide sequences with two, three, or four lysine residues. Calculations on the sequence Ac-LYS-(ALA)4-LYS-NMe also reveal low-energy alpha-helical conformations with interactions of one of the LYS side chains with the helix backbone in an arrangement quite similar to the one described recently by (Proc. Natl. Acad. Sci. U.S.A. 93:4025-4029). The results of this study provide a sound basis with which to discuss the nature of the interactions, such as hydrophobicity, charge-charge interaction, and solvent polarization effects, that stabilize right-handed alpha-helical conformations.
Full Text
The Full Text of this article is available as a PDF (389.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. The formation and stabilization of protein structure. Biochem J. 1972 Jul;128(4):737–749. doi: 10.1042/bj1280737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bradley E. K., Thomason J. F., Cohen F. E., Kosen P. A., Kuntz I. D. Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance. J Mol Biol. 1990 Oct 20;215(4):607–622. doi: 10.1016/S0022-2836(05)80172-X. [DOI] [PubMed] [Google Scholar]
- Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
- Doig A. J., Baldwin R. L. N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 1995 Jul;4(7):1325–1336. doi: 10.1002/pro.5560040708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dygert M. K., Taylor G. T., Cardinaux F., Scheraga H. A. Helix-coil stability constants for the naturally occurring amino acids in water. 11. Lysine parameters from random poly(hydroxybutylglutamine-co-L-lysine). Macromolecules. 1976 Sep-Oct;9(5):794–801. doi: 10.1021/ma60053a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkelstein A. V., Badretdinov A. Y., Ptitsyn O. B. Physical reasons for secondary structure stability: alpha-helices in short peptides. Proteins. 1991;10(4):287–299. doi: 10.1002/prot.340100403. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Ptitsyn O. B. A theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chains. J Mol Biol. 1976 May 5;103(1):15–24. doi: 10.1016/0022-2836(76)90049-8. [DOI] [PubMed] [Google Scholar]
- Groebke K., Renold P., Tsang K. Y., Allen T. J., McClure K. F., Kemp D. S. Template-nucleated alanine-lysine helices are stabilized by position-dependent interactions between the lysine side chain and the helix barrel. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4025–4029. doi: 10.1073/pnas.93.9.4025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingwall R. T., Scheraga H. A., Lotan N., Berger A., Katchalski E. Conformational studies of poly-L-alanine in water. Biopolymers. 1968;6(3):331–368. doi: 10.1002/bip.1968.360060308. [DOI] [PubMed] [Google Scholar]
- Kemp D. S., Boyd J. G., Muendel C. C. The helical s constant for alanine in water derived from template-nucleated helices. Nature. 1991 Aug 1;352(6334):451–454. doi: 10.1038/352451a0. [DOI] [PubMed] [Google Scholar]
- Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
- Magalhaes A., Maigret B., Hoflack J., Gomes J. N., Scheraga H. A. Contribution of unusual arginine-arginine short-range interactions to stabilization and recognition in proteins. J Protein Chem. 1994 Feb;13(2):195–215. doi: 10.1007/BF01891978. [DOI] [PubMed] [Google Scholar]
- Marqusee S., Robbins V. H., Baldwin R. L. Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5286–5290. doi: 10.1073/pnas.86.14.5286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merutka G., Lipton W., Shalongo W., Park S. H., Stellwagen E. Effect of central-residue replacements on the helical stability of a monomeric peptide. Biochemistry. 1990 Aug 14;29(32):7511–7515. doi: 10.1021/bi00484a021. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
- Padmanabhan S., Marqusee S., Ridgeway T., Laue T. M., Baldwin R. L. Relative helix-forming tendencies of nonpolar amino acids. Nature. 1990 Mar 15;344(6263):268–270. doi: 10.1038/344268a0. [DOI] [PubMed] [Google Scholar]
- Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. Handedness of crossover connections in beta sheets. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2619–2623. doi: 10.1073/pnas.73.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ripoll D. R., Liwo A., Scheraga H. A. New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin. Biopolymers. 1998 Aug;46(2):117–126. doi: 10.1002/(SICI)1097-0282(199808)46:2<117::AID-BIP6>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Ripoll D. R., Scheraga H. A. On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method--tests on poly(L-alanine). Biopolymers. 1988 Aug;27(8):1283–1303. doi: 10.1002/bip.360270808. [DOI] [PubMed] [Google Scholar]
- Ripoll D. R., Scheraga H. A. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin. J Protein Chem. 1989 Apr;8(2):263–287. doi: 10.1007/BF01024949. [DOI] [PubMed] [Google Scholar]
- Ripoll D. R., Vorobjev Y. N., Liwo A., Vila J. A., Scheraga H. A. Coupling between folding and ionization equilibria: effects of pH on the conformational preferences of polypeptides. J Mol Biol. 1996 Dec 13;264(4):770–783. doi: 10.1006/jmbi.1996.0676. [DOI] [PubMed] [Google Scholar]
- Vila J., Williams R. L., Grant J. A., Wójcik J., Scheraga H. A. The intrinsic helix-forming tendency of L-alanine. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7821–7825. doi: 10.1073/pnas.89.16.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vila J., Williams R. L., Vásquez M., Scheraga H. A. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. Proteins. 1991;10(3):199–218. doi: 10.1002/prot.340100305. [DOI] [PubMed] [Google Scholar]
- Wilmot C. M., Thornton J. M. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990 May;3(6):479–493. doi: 10.1093/protein/3.6.479. [DOI] [PubMed] [Google Scholar]
- Wynn R., Harkins P. C., Richards F. M., Fox R. O. Comparison of straight chain and cyclic unnatural amino acids embedded in the core of staphylococcal nuclease. Protein Sci. 1997 Aug;6(8):1621–1626. doi: 10.1002/pro.5560060803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman S. S., Pottle M. S., Némethy G., Scheraga H. A. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Macromolecules. 1977 Jan-Feb;10(1):1–9. doi: 10.1021/ma60055a001. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. S., Scheraga H. A. Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N'-methylamides of Pro-X and X-Pro dipeptides. Biopolymers. 1977 Apr;16(4):811–843. doi: 10.1002/bip.1977.360160408. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. S., Scheraga H. A. Local interactions in bends of proteins. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4126–4129. doi: 10.1073/pnas.74.10.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]