Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2658–2671. doi: 10.1016/S0006-3495(98)77711-2

Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape.

T X Xiang 1, B D Anderson 1
PMCID: PMC1299941  PMID: 9826590

Abstract

The effects of lipid chain packing and permeant size and shape on permeability across lipid bilayers have been investigated in gel and liquid crystalline dipalmitoylphosphatidylcholine (DPPC) bilayers by a combined NMR line-broadening/dynamic light scattering method using seven short-chain monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, and trimethylacetic acid) as permeants. The experimental permeability coefficients are compared with the predictions of a bulk solubility diffusion model in which the bilayer membrane is represented as a slab of bulk hexadecane. Deviations of the observed permeability coefficients (Pm) from the values predicted from solubility diffusion theory (Po) lead to the determination of a correction factor, the permeability decrement f (= Pm/Po), to account for the effects of chain ordering. The natural logarithm of f has been found to correlate linearly with the inverse of the bilayer free surface area with slopes of 25 +/- 2, 36 +/- 3, 45 +/- 8, 32 +/- 12, 33 +/- 4, 49 +/- 12, and 75 +/- 6 A2 for formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, and trimethylacetic acid, respectively. The slope, which measures the sensitivity of the permeability coefficient of a given permeant to bilayer chain packing, exhibits an excellent linear correlation (r = 0.94) with the minimum cross-sectional area of the permeant and a poor correlation (r = 0.59) with molecular volume, suggesting that in the bilayer interior the permeants prefer to move with their long principal axis along the bilayer normal. Based on these studies, a permeability model combining the effects of bilayer chain packing and permeant size and shape on permeability across lipid membranes is developed.

Full Text

The Full Text of this article is available as a PDF (183.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger J. R., Prestegard J. H. Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes. Biophys J. 1979 Oct;28(1):1–13. doi: 10.1016/S0006-3495(79)85154-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson B. D., Raykar P. V. Solute structure-permeability relationships in human stratum corneum. J Invest Dermatol. 1989 Aug;93(2):280–286. doi: 10.1111/1523-1747.ep12277592. [DOI] [PubMed] [Google Scholar]
  3. Bangham A. D., Standish M. M., Watkins J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6. [DOI] [PubMed] [Google Scholar]
  4. Bar-On Z., Degani H. Permeability of alkylamines across phosphatidylcholine vesicles as studied by 1H-NMR. Biochim Biophys Acta. 1985 Mar 14;813(2):207–212. doi: 10.1016/0005-2736(85)90235-4. [DOI] [PubMed] [Google Scholar]
  5. Boden N., Jones S. A., Sixl F. On the use of deuterium nuclear magnetic resonance as a probe of chain packing in lipid bilayers. Biochemistry. 1991 Feb 26;30(8):2146–2155. doi: 10.1021/bi00222a019. [DOI] [PubMed] [Google Scholar]
  6. Brahm J. Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method. J Gen Physiol. 1983 Feb;81(2):283–304. doi: 10.1085/jgp.81.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bresseleers G. J., Goderis H. L., Tobback P. P. Measurement of the glucose permeation rate across phospholipid bilayers using small unilamellar vesicles. Effect of membrane composition and temperature. Biochim Biophys Acta. 1984 May 30;772(3):374–382. doi: 10.1016/0005-2736(84)90154-8. [DOI] [PubMed] [Google Scholar]
  8. Davis S. S., Higuchi T., Rytting J. H. Determination of thermodynamics of the methylene group in solutions of drug molecules. J Pharm Pharmacol. 1972 Dec;24(Suppl):30P–46P. [PubMed] [Google Scholar]
  9. De Gier J., Mandersloot J. G., Hupkes J. V., McElhaney R. N., Van Beek W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim Biophys Acta. 1971 Jun 1;233(3):610–618. doi: 10.1016/0005-2736(71)90160-x. [DOI] [PubMed] [Google Scholar]
  10. De Young L. R., Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry. 1988 Jul 12;27(14):5281–5289. doi: 10.1021/bi00414a050. [DOI] [PubMed] [Google Scholar]
  11. Fettiplace R., Haydon D. A. Water permeability of lipid membranes. Physiol Rev. 1980 Apr;60(2):510–550. doi: 10.1152/physrev.1980.60.2.510. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976 Aug;68(2):127–135. doi: 10.1085/jgp.68.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Galla H. J., Hartmann W., Theilen U., Sackmann E. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J Membr Biol. 1979 Jul 31;48(3):215–236. doi: 10.1007/BF01872892. [DOI] [PubMed] [Google Scholar]
  14. Hanai T., Haydon D. A. The permeability to water of bimolecular lipid membranes. J Theor Biol. 1966 Aug;11(3):370–382. doi: 10.1016/0022-5193(66)90099-3. [DOI] [PubMed] [Google Scholar]
  15. Jansen M., Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys J. 1995 Mar;68(3):997–1008. doi: 10.1016/S0006-3495(95)80275-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klocke R. A., Andersson K. K., Rotman H. H., Forster R. E. Permeability of human erythrocytes to ammonia and weak acids. Am J Physiol. 1972 Apr;222(4):1004–1013. doi: 10.1152/ajplegacy.1972.222.4.1004. [DOI] [PubMed] [Google Scholar]
  17. Lande M. B., Donovan J. M., Zeidel M. L. The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol. 1995 Jul;106(1):67–84. doi: 10.1085/jgp.106.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lieb W. R., Stein W. D. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature. 1969 Oct 18;224(5216):240–243. doi: 10.1038/224240a0. [DOI] [PubMed] [Google Scholar]
  19. Magin R. L., Niesman M. R. Temperature-dependent permeability of large unilamellar liposomes. Chem Phys Lipids. 1984 Mar;34(3):245–256. doi: 10.1016/0009-3084(84)90059-8. [DOI] [PubMed] [Google Scholar]
  20. Morrow M. R., Whitehead J. P., Lu D. Chain-length dependence of lipid bilayer properties near the liquid crystal to gel phase transition. Biophys J. 1992 Jul;63(1):18–27. doi: 10.1016/S0006-3495(92)81579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olson F., Hunt C. A., Szoka F. C., Vail W. J., Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979 Oct 19;557(1):9–23. doi: 10.1016/0005-2736(79)90085-3. [DOI] [PubMed] [Google Scholar]
  23. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  24. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peters R., Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7183–7187. doi: 10.1073/pnas.80.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. ROSEN H., LEAF A., SCHWARTZ W. B. DIFFUSION OF WEAK ACIDS ACROSS THE TOAD BLADDER. INFLUENCE OF PH ON NON-IONIC PERMEABILITY COEFFICIENTS. J Gen Physiol. 1964 Nov;48:379–389. doi: 10.1085/jgp.48.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sada E., Katoh S., Terashima M., Kawahara H., Katoh M. Effects of surface charges and cholesterol content on amino acid permeabilities of small unilamellar vesicles. J Pharm Sci. 1990 Mar;79(3):232–235. doi: 10.1002/jps.2600790311. [DOI] [PubMed] [Google Scholar]
  28. Sallee V. L., Dietschy J. M. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J Lipid Res. 1973 Jul;14(4):475–484. [PubMed] [Google Scholar]
  29. Schnitzer J. E. Analysis of steric partition behavior of molecules in membranes using statistical physics. Application to gel chromatography and electrophoresis. Biophys J. 1988 Dec;54(6):1065–1076. doi: 10.1016/S0006-3495(88)83043-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  31. Todd A. P., Mehlhorn R. J., Macey R. I. Amine and carboxylate spin probe permeability in red cells. J Membr Biol. 1989 Jul;109(1):41–52. doi: 10.1007/BF01870789. [DOI] [PubMed] [Google Scholar]
  32. Todd A. P., Mehlhorn R. J., Macey R. I. Amine spin probe permeability in sonicated liposomes. J Membr Biol. 1989 Jul;109(1):53–64. doi: 10.1007/BF01870790. [DOI] [PubMed] [Google Scholar]
  33. Vaz W. L., Clegg R. M., Hallmann D. Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry. 1985 Jan 29;24(3):781–786. doi: 10.1021/bi00324a037. [DOI] [PubMed] [Google Scholar]
  34. Vaz W. L., Hallmann D., Clegg R. M., Gambacorta A., De Rosa M. A comparison of the translational diffusion of a normal and a membrane-spanning lipid in L alpha phase 1-palmitoyl-2-oleoylphosphatidylcholine bilayers. Eur Biophys J. 1985;12(1):19–24. doi: 10.1007/BF00254091. [DOI] [PubMed] [Google Scholar]
  35. Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
  36. Walter A., Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–264. doi: 10.1007/BF01870573. [DOI] [PubMed] [Google Scholar]
  37. Walter A., Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–217. doi: 10.1007/BF01870127. [DOI] [PubMed] [Google Scholar]
  38. Worman H. J., Brasitus T. A., Dudeja P. K., Fozzard H. A., Field M. Relationship between lipid fluidity and water permeability of bovine tracheal epithelial cell apical membranes. Biochemistry. 1986 Apr 8;25(7):1549–1555. doi: 10.1021/bi00355a014. [DOI] [PubMed] [Google Scholar]
  39. Xiang T. X., Anderson B. D. Development of a combined NMR paramagnetic ion-induced line-broadening/dynamic light scattering method for permeability measurements across lipid bilayer membranes. J Pharm Sci. 1995 Nov;84(11):1308–1315. doi: 10.1002/jps.2600841110. [DOI] [PubMed] [Google Scholar]
  40. Xiang T. X., Anderson B. D. Molecular distributions in interphases: statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys J. 1994 Mar;66(3 Pt 1):561–572. doi: 10.1016/s0006-3495(94)80833-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xiang T. X., Anderson B. D. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys J. 1997 Jan;72(1):223–237. doi: 10.1016/S0006-3495(97)78661-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Xiang T. X., Anderson B. D. Phospholipid surface density determines the partitioning and permeability of acetic acid in DMPC:cholesterol bilayers. J Membr Biol. 1995 Nov;148(2):157–167. doi: 10.1007/BF00207271. [DOI] [PubMed] [Google Scholar]
  43. Xiang T. X., Anderson B. D. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes. J Pharm Sci. 1994 Oct;83(10):1511–1518. doi: 10.1002/jps.2600831027. [DOI] [PubMed] [Google Scholar]
  44. Xiang T. X., Anderson B. D. The relationship between permeant size and permeability in lipid bilayer membranes. J Membr Biol. 1994 Jun;140(2):111–122. doi: 10.1007/BF00232899. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES