Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2757–2766. doi: 10.1016/S0006-3495(98)77719-7

Amino acid-activated channels in the catfish taste system.

T Kumazawa 1, J G Brand 1, J H Teeter 1
PMCID: PMC1299949  PMID: 9826598

Abstract

Membrane vesicles derived from external taste epithelia of channel catfish (Ictalurus punctatus) were incorporated into lipid bilayers on the tips of patch pipettes. Consistent with previous experiments (Teeter, J. H., J. G. Brand, and T. Kumazawa. 1990. Biophys. J. 58:253-259), micromolar (0.5-200 microM) concentrations of L-arginine (L-Arg), a potent taste stimulus for catfish, activated a nonselective cation conductance in some bilayers, which was antagonized by D-Arg. Two classes of L-Arg-gated receptor/channels were observed in reconstituted taste epithelial membranes: one with a unitary conductance of 40-60 pS, and the other with a conductance of 75-100 pS. A separate class of nonselective cation channels, with a conductance of 50-65 pS, was activated by high concentrations of L-proline (L-Pro) (0.1-3 mM), which is the range necessary to elicit neural responses in catfish taste fibers. The L-Pro-activated channels were not affected by either L- or D-Arg, but were blocked by millimolar concentrations of D-Pro. Conversely, neither L- nor D-Pro altered the activity of either class of L-Arg-activated channels, which were blocked by micromolar concentrations of D-Arg. These results are consistent with biochemical, neurophysiological, and behavioral studies indicating that taste responses of channel catfish to L-Arg are mediated by high-affinity receptors that are part of or closely coupled to nonselective cation channels directly gated by low concentrations of L-Arg, while responses to L-Pro are mediated by distinct, low-affinity receptors also associated with nonselective cation channels.

Full Text

The Full Text of this article is available as a PDF (156.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Dodd J., Al-Awqati Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science. 1988 Nov 18;242(4881):1047–1050. doi: 10.1126/science.3194756. [DOI] [PubMed] [Google Scholar]
  2. Avenet P., Hofmann F., Lindemann B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature. 1988 Jan 28;331(6154):351–354. doi: 10.1038/331351a0. [DOI] [PubMed] [Google Scholar]
  3. Avenet P., Lindemann B. Action potentials in epithelial taste receptor cells induced by mucosal calcium. J Membr Biol. 1987;95(3):265–269. doi: 10.1007/BF01869488. [DOI] [PubMed] [Google Scholar]
  4. Avenet P., Lindemann B. Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol. 1988 Nov;105(3):245–255. doi: 10.1007/BF01871001. [DOI] [PubMed] [Google Scholar]
  5. Avenet P., Lindemann B. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride. J Membr Biol. 1991 Oct;124(1):33–41. doi: 10.1007/BF01871362. [DOI] [PubMed] [Google Scholar]
  6. Avenet P., Lindemann B. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol. 1987;97(3):223–240. doi: 10.1007/BF01869225. [DOI] [PubMed] [Google Scholar]
  7. Bernhardt S. J., Naim M., Zehavi U., Lindemann B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol. 1996 Jan 15;490(Pt 2):325–336. doi: 10.1113/jphysiol.1996.sp021147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bigiani A., Kim D. J., Roper S. D. Membrane properties and cell ultrastructure of taste receptor cells in Necturus lingual slices. J Neurophysiol. 1996 May;75(5):1944–1956. doi: 10.1152/jn.1996.75.5.1944. [DOI] [PubMed] [Google Scholar]
  9. Bigiani A., Roper S. D. Identification of electrophysiologically distinct cell subpopulations in Necturus taste buds. J Gen Physiol. 1993 Jul;102(1):143–170. doi: 10.1085/jgp.102.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brand J. G., Teeter J. H., Kumazawa T., Huque T., Bayley D. L. Transduction mechanisms for the taste of amino acids. Physiol Behav. 1991 May;49(5):899–904. doi: 10.1016/0031-9384(91)90201-x. [DOI] [PubMed] [Google Scholar]
  11. Brand J. G., Teeter J. H., Silver W. L. Inhibition by amiloride of chorda tympani responses evoked by monovalent salts. Brain Res. 1985 May 20;334(2):207–214. doi: 10.1016/0006-8993(85)90212-4. [DOI] [PubMed] [Google Scholar]
  12. Béhé P., DeSimone J. A., Avenet P., Lindemann B. Membrane currents in taste cells of the rat fungiform papilla. Evidence for two types of Ca currents and inhibition of K currents by saccharin. J Gen Physiol. 1990 Nov;96(5):1061–1084. doi: 10.1085/jgp.96.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cagan R. H. Biochemical studies of taste sensation--XII. Specificity of binding of taste ligands to a sedimentable fraction from catfish taste tissue. Comp Biochem Physiol A Comp Physiol. 1986;85(2):355–358. doi: 10.1016/0300-9629(86)90262-8. [DOI] [PubMed] [Google Scholar]
  14. Caprio J., Brand J. G., Teeter J. H., Valentincic T., Kalinoski D. L., Kohbara J., Kumazawa T., Wegert S. The taste system of the channel catfish: from biophysics to behavior. Trends Neurosci. 1993 May;16(5):192–197. doi: 10.1016/0166-2236(93)90152-c. [DOI] [PubMed] [Google Scholar]
  15. Coronado R., Latorre R. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J. 1983 Aug;43(2):231–236. doi: 10.1016/S0006-3495(83)84343-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cummings T. A., Daniels C., Kinnamon S. C. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current. J Neurophysiol. 1996 Mar;75(3):1256–1263. doi: 10.1152/jn.1996.75.3.1256. [DOI] [PubMed] [Google Scholar]
  17. Cummings T. A., Kinnamon S. C. Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli. J Gen Physiol. 1992 Apr;99(4):591–613. doi: 10.1085/jgp.99.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cummings T. A., Powell J., Kinnamon S. C. Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. J Neurophysiol. 1993 Dec;70(6):2326–2336. doi: 10.1152/jn.1993.70.6.2326. [DOI] [PubMed] [Google Scholar]
  19. Finger T. E., Bryant B. P., Kalinoski D. L., Teeter J. H., Böttger B., Grosvenor W., Cagan R. H., Brand J. G. Differential localization of putative amino acid receptors in taste buds of the channel catfish, Ictalurus punctatus. J Comp Neurol. 1996 Sep 9;373(1):129–138. doi: 10.1002/(SICI)1096-9861(19960909)373:1<129::AID-CNE11>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  20. Fujiyama R., Miyamoto T., Sato T. Differential distribution of two Ca(2+)-dependent and -independent K+ channels throughout receptive and basolateral membranes of bullfrog taste cells. Pflugers Arch. 1994 Dec;429(2):285–290. doi: 10.1007/BF00374325. [DOI] [PubMed] [Google Scholar]
  21. Gilbertson T. A., Avenet P., Kinnamon S. C., Roper S. D. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J Gen Physiol. 1992 Nov;100(5):803–824. doi: 10.1085/jgp.100.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gilbertson T. A., Roper S. D., Kinnamon S. C. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron. 1993 May;10(5):931–942. doi: 10.1016/0896-6273(93)90208-9. [DOI] [PubMed] [Google Scholar]
  23. Heck G. L., Mierson S., DeSimone J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984 Jan 27;223(4634):403–405. doi: 10.1126/science.6691151. [DOI] [PubMed] [Google Scholar]
  24. Herness M. S., Sun X. D., Chen Y. cAMP and forskolin inhibit potassium currents in rat taste receptor cells by different mechanisms. Am J Physiol. 1997 Jun;272(6 Pt 1):C2005–C2018. doi: 10.1152/ajpcell.1997.272.6.C2005. [DOI] [PubMed] [Google Scholar]
  25. Herness M. S., Sun X. D. Voltage-dependent sodium currents recorded from dissociated rat taste cells. J Membr Biol. 1995 Jul;146(1):73–84. doi: 10.1007/BF00232681. [DOI] [PubMed] [Google Scholar]
  26. Hettinger T. P., Frank M. E. Specificity of amiloride inhibition of hamster taste responses. Brain Res. 1990 Apr 9;513(1):24–34. doi: 10.1016/0006-8993(90)91085-u. [DOI] [PubMed] [Google Scholar]
  27. Kinnamon S. C., Dionne V. E., Beam K. G. Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7023–7027. doi: 10.1073/pnas.85.18.7023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kinnamon S. C., Margolskee R. F. Mechanisms of taste transduction. Curr Opin Neurobiol. 1996 Aug;6(4):506–513. doi: 10.1016/s0959-4388(96)80057-2. [DOI] [PubMed] [Google Scholar]
  29. Kinnamon S. C., Roper S. D. Membrane properties of isolated mudpuppy taste cells. J Gen Physiol. 1988 Mar;91(3):351–371. doi: 10.1085/jgp.91.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kinnamon S. C., Roper S. D. Passive and active membrane properties of mudpuppy taste receptor cells. J Physiol. 1987 Feb;383:601–614. doi: 10.1113/jphysiol.1987.sp016431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kohbara J., Michel W., Caprio J. Responses of single facial taste fibers in the channel catfish, Ictalurus punctatus, to amino acids. J Neurophysiol. 1992 Oct;68(4):1012–1026. doi: 10.1152/jn.1992.68.4.1012. [DOI] [PubMed] [Google Scholar]
  32. Krueger J. M., Cagan R. H. Biochemical studies of tast sensation. Binding of L-[3H]alanine to a sedimentable fraction from catfish barbel epithelium. J Biol Chem. 1976 Jan 10;251(1):88–97. [PubMed] [Google Scholar]
  33. Lindemann B. Taste reception. Physiol Rev. 1996 Jul;76(3):718–766. doi: 10.1152/physrev.1996.76.3.719. [DOI] [PubMed] [Google Scholar]
  34. McPheeters M., Barber A. J., Kinnamon S. C., Kinnamon J. C. Electrophysiological and morphological properties of light and dark cells isolated from mudpuppy taste buds. J Comp Neurol. 1994 Aug 22;346(4):601–612. doi: 10.1002/cne.903460411. [DOI] [PubMed] [Google Scholar]
  35. Miyamoto T., Miyazaki T., Okada Y., Sato T. Whole-cell recording from non-dissociated taste cells in mouse taste bud. J Neurosci Methods. 1996 Feb;64(2):245–252. doi: 10.1016/0165-0270(95)00138-7. [DOI] [PubMed] [Google Scholar]
  36. Naim M., Ronen T., Striem B. J., Levinson M., Zehavi U. Adenylate cyclase responses to sucrose stimulation in membranes of pig circumvallate taste papillae. Comp Biochem Physiol B. 1991;100(3):455–458. doi: 10.1016/0305-0491(91)90203-p. [DOI] [PubMed] [Google Scholar]
  37. Roper S. Regenerative impulses in taste cells. Science. 1983 Jun 17;220(4603):1311–1312. doi: 10.1126/science.6857254. [DOI] [PubMed] [Google Scholar]
  38. Ruiz-Avila L., McLaughlin S. K., Wildman D., McKinnon P. J., Robichon A., Spickofsky N., Margolskee R. F. Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature. 1995 Jul 6;376(6535):80–85. doi: 10.1038/376080a0. [DOI] [PubMed] [Google Scholar]
  39. Schiffman S. S., Lockhead E., Maes F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6136–6140. doi: 10.1073/pnas.80.19.6136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spielman A. I., Huque T., Nagai H., Whitney G., Brand J. G. Generation of inositol phosphates in bitter taste transduction. Physiol Behav. 1994 Dec;56(6):1149–1155. doi: 10.1016/0031-9384(94)90359-x. [DOI] [PubMed] [Google Scholar]
  41. Spielman A. I., Huque T., Whitney G., Brand J. G. The diversity of bitter taste signal transduction mechanisms. Soc Gen Physiol Ser. 1992;47:307–324. [PubMed] [Google Scholar]
  42. Spielman A. I., Mody I., Brand J. G., Whitney G., MacDonald J. F., Salter M. W. A method for isolating and patch-clamping single mammalian taste receptor cells. Brain Res. 1989 Dec 4;503(2):326–329. doi: 10.1016/0006-8993(89)91684-3. [DOI] [PubMed] [Google Scholar]
  43. Spielman A. I., Nagai H., Sunavala G., Dasso M., Breer H., Boekhoff I., Huque T., Whitney G., Brand J. G. Rapid kinetics of second messenger production in bitter taste. Am J Physiol. 1996 Mar;270(3 Pt 1):C926–C931. doi: 10.1152/ajpcell.1996.270.3.C926. [DOI] [PubMed] [Google Scholar]
  44. Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J. 1989 May 15;260(1):121–126. doi: 10.1042/bj2600121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sugimoto K., Teeter J. H. Voltage-dependent ionic currents in taste receptor cells of the larval tiger salamander. J Gen Physiol. 1990 Oct;96(4):809–834. doi: 10.1085/jgp.96.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sun X. D., Herness M. S. Characterization of inwardly rectifying potassium currents from dissociated rat taste receptor cells. Am J Physiol. 1996 Oct;271(4 Pt 1):C1221–C1232. doi: 10.1152/ajpcell.1996.271.4.C1221. [DOI] [PubMed] [Google Scholar]
  47. Teeter J. H., Brand J. G., Kumazawa T. A stimulus-activated conductance in isolated taste epithelial membranes. Biophys J. 1990 Jul;58(1):253–259. doi: 10.1016/S0006-3495(90)82370-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Teeter J. H., Kumazawa T., Brand J. G., Kalinoski D. L., Honda E., Smutzer G. Amino acid receptor channels in taste cells. Soc Gen Physiol Ser. 1992;47:291–306. [PubMed] [Google Scholar]
  49. Tonosaki K., Funakoshi M. Cyclic nucleotides may mediate taste transduction. Nature. 1988 Jan 28;331(6154):354–356. doi: 10.1038/331354a0. [DOI] [PubMed] [Google Scholar]
  50. Wegert S., Caprio J. Receptor sites for amino acids in the facial taste system of the channel catfish. J Comp Physiol A. 1991 Feb;168(2):201–211. doi: 10.1007/BF00218412. [DOI] [PubMed] [Google Scholar]
  51. Wong G. T., Gannon K. S., Margolskee R. F. Transduction of bitter and sweet taste by gustducin. Nature. 1996 Jun 27;381(6585):796–800. doi: 10.1038/381796a0. [DOI] [PubMed] [Google Scholar]
  52. Zviman M. M., Restrepo D., Teeter J. H. Single taste stimuli elicit either increases or decreases in intracellular calcium in isolated catfish taste cells. J Membr Biol. 1996 Jan;149(2):81–88. doi: 10.1007/s002329900009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES