Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2858–2867. doi: 10.1016/S0006-3495(98)77728-8

Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches.

A Y Kabakov 1
PMCID: PMC1299958  PMID: 9826607

Abstract

Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, zero calcium), and IC50 of ATP for IK-ATP (0.3 +/- 0.1 mM) by 2/5. The Na+/Li+ replacement had no effect on IK-ATP at low pump activity ([ATP] </= 0.1 mM or 100 microM ouabain) or when IK-ATP was completely inhibited by 10 mM ATP. In whole-cell configuration, ouabain inhibited up to 60% of inwardly rectifying IK-ATP at 1 mM ATP in the pipette but not at 10 mM ATP and 10 mM phosphocreatine when IK-ATP was always blocked. However, mathematical simulation of giant-patch experiments revealed that only 20% of ATP depletion may be attributed to the ATP concentration gradient in the bulk solution, and the remaining 80% probably occurs in the submembrane space.

Full Text

The Full Text of this article is available as a PDF (122.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baghdady R., Nichols C. ATP sensitive potassium channels and ischemic heart disease. Cardiovasc Res. 1994 Jan;28(1):135–136. doi: 10.1093/cvr/28.1.135. [DOI] [PubMed] [Google Scholar]
  2. Benndorf K., Bollmann G., Friedrich M., Hirche H. Anoxia induces time-independent K+ current through KATP channels in isolated heart cells of the guinea-pig. J Physiol. 1992 Aug;454:339–357. doi: 10.1113/jphysiol.1992.sp019267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benndorf K., Friedrich M., Hirche H. Anoxia opens ATP regulated K channels in isolated heart cells of the guinea pig. Pflugers Arch. 1991 Aug;419(1):108–110. doi: 10.1007/BF00373754. [DOI] [PubMed] [Google Scholar]
  4. Bielen F. V., Glitsch H. G., Verdonck F. Changes of the subsarcolemmal Na+ concentration in internally perfused cardiac cells. Biochim Biophys Acta. 1991 Jun 18;1065(2):269–271. doi: 10.1016/0005-2736(91)90239-5. [DOI] [PubMed] [Google Scholar]
  5. Carmeliet E. A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res. 1992 May;26(5):433–442. doi: 10.1093/cvr/26.5.433. [DOI] [PubMed] [Google Scholar]
  6. Chien K. R., Han A., Sen A., Buja L. M., Willerson J. T. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 1984 Mar;54(3):313–322. doi: 10.1161/01.res.54.3.313. [DOI] [PubMed] [Google Scholar]
  7. Coetzee W. A. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport. Cardiovasc Res. 1992 Nov;26(11):1077–1086. doi: 10.1093/cvr/26.11.1077. [DOI] [PubMed] [Google Scholar]
  8. Collins A., Somlyo A. V., Hilgemann D. W. The giant cardiac membrane patch method: stimulation of outward Na(+)-Ca2+ exchange current by MgATP. J Physiol. 1992 Aug;454:27–57. doi: 10.1113/jphysiol.1992.sp019253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deutsch N., Weiss J. N. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes. J Physiol. 1993 Jun;465:163–179. doi: 10.1113/jphysiol.1993.sp019671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  11. Docherty J. C., Gunter H. E., Kuzio B., Shoemaker L., Yang L., Deslauriers R. Effects of cromakalim and glibenclamide on myocardial high energy phosphates and intracellular pH during ischemia-reperfusion: 31P NMR studies. J Mol Cell Cardiol. 1997 Jun;29(6):1665–1673. doi: 10.1006/jmcc.1997.0404. [DOI] [PubMed] [Google Scholar]
  12. Ellis D., Noireaud J. Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J Physiol. 1987 Feb;383:125–141. doi: 10.1113/jphysiol.1987.sp016400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Findlay I., Dunne M. J. ATP maintains ATP-inhibited K+ channels in an operational state. Pflugers Arch. 1986 Aug;407(2):238–240. doi: 10.1007/BF00580683. [DOI] [PubMed] [Google Scholar]
  14. Friedrich T., Bamberg E., Nagel G. Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J. 1996 Nov;71(5):2486–2500. doi: 10.1016/S0006-3495(96)79442-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Furukawa T., Virág L., Furukawa N., Sawanobori T., Hiraoka M. Mechanism for reactivation of the ATP-sensitive K+ channel by MgATP complexes in guinea-pig ventricular myocytes. J Physiol. 1994 Aug 15;479(Pt 1):95–107. doi: 10.1113/jphysiol.1994.sp020280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gadsby D. C., Nakao M. Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):511–537. doi: 10.1085/jgp.94.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gadsby D. C., Rakowski R. F., De Weer P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science. 1993 Apr 2;260(5104):100–103. doi: 10.1126/science.7682009. [DOI] [PubMed] [Google Scholar]
  18. Glitsch H. G., Tappe A. Change of Na+ pump current reversal potential in sheep cardiac Purkinje cells with varying free energy of ATP hydrolysis. J Physiol. 1995 May 1;484(Pt 3):605–616. doi: 10.1113/jphysiol.1995.sp020690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grapengiesser E., Berts A., Saha S., Lund P. E., Gylfe E., Hellman B. Dual effects of Na/K pump inhibition on cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Arch Biochem Biophys. 1993 Jan;300(1):372–377. doi: 10.1006/abbi.1993.1050. [DOI] [PubMed] [Google Scholar]
  21. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hilgemann D. W., Ball R. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science. 1996 Aug 16;273(5277):956–959. doi: 10.1126/science.273.5277.956. [DOI] [PubMed] [Google Scholar]
  23. Horie M., Irisawa H., Noma A. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol. 1987 Jun;387:251–272. doi: 10.1113/jphysiol.1987.sp016572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang H., St-Jean H., Coady M. J., Lapointe J. Y. Evidence for coupling between Na+ pump activity and TEA-sensitive K+ currents in Xenopus laevis oocytes. J Membr Biol. 1995 Jan;143(1):29–35. doi: 10.1007/BF00232521. [DOI] [PubMed] [Google Scholar]
  25. Hubley M. J., Rosanske R. C., Moerland T. S. Diffusion coefficients of ATP and creatine phosphate in isolated muscle: pulsed gradient 31P NMR of small biological samples. NMR Biomed. 1995 Apr;8(2):72–78. doi: 10.1002/nbm.1940080205. [DOI] [PubMed] [Google Scholar]
  26. Hurst A. M., Beck J. S., Laprade R., Lapointe J. Y. Na+ pump inhibition downregulates an ATP-sensitive K+ channel in rabbit proximal convoluted tubule. Am J Physiol. 1993 Apr;264(4 Pt 2):F760–F764. doi: 10.1152/ajprenal.1993.264.4.F760. [DOI] [PubMed] [Google Scholar]
  27. Jaffe L. F. The interpretation of voltage-concentration relations. J Theor Biol. 1974 Nov;48(1):11–18. doi: 10.1016/0022-5193(74)90175-1. [DOI] [PubMed] [Google Scholar]
  28. Jafri M. S., Rice J. J., Winslow R. L. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J. 1998 Mar;74(3):1149–1168. doi: 10.1016/S0006-3495(98)77832-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jakobsson E. Interactions of cell volume, membrane potential, and membrane transport parameters. Am J Physiol. 1980 May;238(5):C196–C206. doi: 10.1152/ajpcell.1980.238.5.C196. [DOI] [PubMed] [Google Scholar]
  30. Kabakov AYu The resting potential equations incorporating ionic pumps and osmotic concentration. J Theor Biol. 1994 Jul 7;169(1):51–64. doi: 10.1006/jtbi.1994.1129. [DOI] [PubMed] [Google Scholar]
  31. Kabakov A. Y., Hilgemann D. W. Modulation of Na+,Ca2+ exchange current by EGTA calcium buffering in giant cardiac membrane patches. Biochim Biophys Acta. 1995 Dec 13;1240(2):142–148. doi: 10.1016/0005-2736(95)00202-2. [DOI] [PubMed] [Google Scholar]
  32. Kabakov A. Y., Karkanias N. B., Lenox R. H., Papke R. L. Synapse-specific accumulation of lithium in intracellular microdomains: a model for uncoupling coincidence detection in the brain. Synapse. 1998 Apr;28(4):271–279. doi: 10.1002/(SICI)1098-2396(199804)28:4<271::AID-SYN2>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  33. Kakei M., Noma A., Shibasaki T. Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol. 1985 Jun;363:441–462. doi: 10.1113/jphysiol.1985.sp015721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kameyama M., Kakei M., Sato R., Shibasaki T., Matsuda H., Irisawa H. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 1984 May 24;309(5966):354–356. doi: 10.1038/309354a0. [DOI] [PubMed] [Google Scholar]
  35. Kim D., Clapham D. E. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science. 1989 Jun 9;244(4909):1174–1176. doi: 10.1126/science.2727703. [DOI] [PubMed] [Google Scholar]
  36. Lederer W. J., Nichols C. G. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol. 1989 Dec;419:193–211. doi: 10.1113/jphysiol.1989.sp017869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lopatin A. N., Makhina E. N., Nichols C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 1994 Nov 24;372(6504):366–369. doi: 10.1038/372366a0. [DOI] [PubMed] [Google Scholar]
  38. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  39. Nichols C. G., Lederer W. J. The mechanism of KATP channel inhibition by ATP. J Gen Physiol. 1991 May;97(5):1095–1098. doi: 10.1085/jgp.97.5.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nichols C. G., Ripoll C., Lederer W. J. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res. 1991 Jan;68(1):280–287. doi: 10.1161/01.res.68.1.280. [DOI] [PubMed] [Google Scholar]
  41. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  42. Priebe L., Friedrich M., Benndorf K. Functional interaction between K(ATP) channels and the Na(+)-K(+) pump in metabolically inhibited heart cells of the guinea-pig. J Physiol. 1996 Apr 15;492(Pt 2):405–417. doi: 10.1113/jphysiol.1996.sp021317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ripoll C., Lederer W. J., Nichols C. G. On the mechanism of inhibition of KATP channels by glibenclamide in rat ventricular myocytes. J Cardiovasc Electrophysiol. 1993 Feb;4(1):38–47. doi: 10.1111/j.1540-8167.1993.tb01210.x. [DOI] [PubMed] [Google Scholar]
  44. Rostovtseva T. K., Bezrukov S. M. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J. 1998 May;74(5):2365–2373. doi: 10.1016/S0006-3495(98)77945-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sato T., Shigematsu S., Arita M. Mexiletine-induced shortening of the action potential duration of ventricular muscles by activation of ATP-sensitive K+ channels. Br J Pharmacol. 1995 Jun;115(3):381–382. doi: 10.1111/j.1476-5381.1995.tb16342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Semb S. O., Sejersted O. M. Fuzzy space and control of Na+, K(+)-pump rate in heart and skeletal muscle. Acta Physiol Scand. 1996 Mar;156(3):213–225. doi: 10.1046/j.1365-201X.1996.211000.x. [DOI] [PubMed] [Google Scholar]
  47. Takano M., Noma A. The ATP-sensitive K+ channel. Prog Neurobiol. 1993 Jul;41(1):21–30. doi: 10.1016/0301-0082(93)90039-u. [DOI] [PubMed] [Google Scholar]
  48. Tani M., Neely J. R. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res. 1989 Oct;65(4):1045–1056. doi: 10.1161/01.res.65.4.1045. [DOI] [PubMed] [Google Scholar]
  49. Tominaga M., Horie M., Sasayama S., Okada Y. Glibenclamide, an ATP-sensitive K+ channel blocker, inhibits cardiac cAMP-activated Cl- conductance. Circ Res. 1995 Aug;77(2):417–423. doi: 10.1161/01.res.77.2.417. [DOI] [PubMed] [Google Scholar]
  50. Tsuchiya K., Wang W., Giebisch G., Welling P. A. ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6418–6422. doi: 10.1073/pnas.89.14.6418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tung P., Pai G., Johnson D. G., Punzalan R., Levin S. R. Relationships between adenylate cyclase and Na+, K(+)-ATPase in rat pancreatic islets. J Biol Chem. 1990 Mar 5;265(7):3936–3939. [PubMed] [Google Scholar]
  52. Urbach V., Van Kerkhove E., Maguire D., Harvey B. J. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells. J Physiol. 1996 Feb 15;491(Pt 1):99–109. doi: 10.1113/jphysiol.1996.sp021199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vanheel B., de Hemptinne A. Influence of KATP channel modulation on net potassium efflux from ischaemic mammalian cardiac tissue. Cardiovasc Res. 1992 Nov;26(11):1030–1039. doi: 10.1093/cvr/26.11.1030. [DOI] [PubMed] [Google Scholar]
  54. Wendt-Gallitelli M. F., Voigt T., Isenberg G. Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea-pig ventricular myocytes. J Physiol. 1993 Dec;472:33–44. doi: 10.1113/jphysiol.1993.sp019934. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES