Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2868–2876. doi: 10.1016/S0006-3495(98)77729-X

Dehydration of model membranes induced by lectins from Ricinus communis and Viscum album.

P Pohl 1, S M Saparov 1, E E Pohl 1, V Y Evtodienko 1, I I Agapov 1, A G Tonevitsky 1
PMCID: PMC1299959  PMID: 9826608

Abstract

The effects of ribosome-inactivating proteins (RIPs) from Ricinus communis and from Viscum album on the water permeability, Pf, and the surface dielectric constant, epsilon, of model membranes were studied. Pf was calculated from microelectrode measurements of the ion concentration distribution in the immediate vicinity of a planar membrane, and epsilon was obtained from the fluorescence of dansyl phosphatidylethanolamine incorporated into unilamellar vesicles. Pf and epsilon of fully saturated phosphatidylcholine membranes were affected only in the presence of a lectin receptor (monosialoganglioside, GM1) in the bilayer. It is suggested that the membrane area occupied by clustered lectin-receptor complexes is markedly less permeable to water. Protein binding to the receptor was not a prelude for hydrophobic lipid-protein interactions when the membranes were formed from a mixture of natural phospholipids with a high content of unsaturated fatty acids. These membranes, characterized by a high initial water permeability, were found to interact with the RIPs unspecifically. From a decrease of both Pf and epsilon it was concluded that not only water partitioning but also protein adsorption correlates with looser packing of polyunsaturated lipids at the lipid-water interface.

Full Text

The Full Text of this article is available as a PDF (126.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agapov I. I., Tonevitsky A. G., Shamshiev A. T., Pohl E., Pohl P., Palmer R. A., Kirpichnikov M. P. The role of structural domains in RIP II toxin model membrane binding. FEBS Lett. 1997 Jan 27;402(1):91–93. doi: 10.1016/s0014-5793(96)01452-4. [DOI] [PubMed] [Google Scholar]
  2. Antoneko Y. N., Bulychev A. A. Measurements of local pH changes near bilayer lipid membrane by means of a pH microelectrode and a protonophore-dependent membrane potential. Comparison of the methods. Biochim Biophys Acta. 1991 Nov 18;1070(1):279–282. doi: 10.1016/0005-2736(91)90176-9. [DOI] [PubMed] [Google Scholar]
  3. Barbieri L., Battelli M. G., Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237–282. doi: 10.1016/0304-4157(93)90002-6. [DOI] [PubMed] [Google Scholar]
  4. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  5. Brinkmann U., Pastan I. Immunotoxins against cancer. Biochim Biophys Acta. 1994 May 27;1198(1):27–45. doi: 10.1016/0304-419x(94)90004-3. [DOI] [PubMed] [Google Scholar]
  6. Citores L., Ferreras J. M., Iglesias R., Carbajales M. L., Arias F. J., Jiménez P., Rojo M. A., Girbés T. Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. Proposal of an extended classification of plant ribosome-inactivating proteins (rRNA N-glycosidases). FEBS Lett. 1993 Aug 23;329(1-2):59–62. doi: 10.1016/0014-5793(93)80193-x. [DOI] [PubMed] [Google Scholar]
  7. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987 Jun 15;262(17):8128–8130. [PubMed] [Google Scholar]
  8. Evans E., Needham D. Giant vesicle bilayers composed of mixtures of lipids, cholesterol and polypeptides. Thermomechanical and (mutual) adherence properties. Faraday Discuss Chem Soc. 1986;(81):267–280. doi: 10.1039/dc9868100267. [DOI] [PubMed] [Google Scholar]
  9. Fettiplace R. The influence of the lipid on the water permeability of artificial membranes. Biochim Biophys Acta. 1978 Oct 19;513(1):1–10. doi: 10.1016/0005-2736(78)90106-2. [DOI] [PubMed] [Google Scholar]
  10. Gawrisch K., Barry J. A., Holte L. L., Sinnwell T., Bergelson L. D., Ferretti J. A. Role of interactions at the lipid-water interface for domain formation. Mol Membr Biol. 1995 Jan-Mar;12(1):83–88. doi: 10.3109/09687689509038500. [DOI] [PubMed] [Google Scholar]
  11. Grant C. W., Peters M. W. Lectin-membrane interactions. Information from model systems. Biochim Biophys Acta. 1984 Dec 4;779(4):403–422. doi: 10.1016/0304-4157(84)90018-2. [DOI] [PubMed] [Google Scholar]
  12. Hincha D. K., Bakaltcheva I., Schmitt J. M. Galactose-Specific Lectins Protect Isolated Thylakoids against Freeze-Thaw Damage. Plant Physiol. 1993 Sep;103(1):59–65. doi: 10.1104/pp.103.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoekstra D., Düzgüneş N. Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles: effect of carbohydrate head group size, calcium ions, and spermine. Biochemistry. 1986 Mar 25;25(6):1321–1330. doi: 10.1021/bi00354a020. [DOI] [PubMed] [Google Scholar]
  14. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  16. Kayser G., Goormaghtigh E., Vandenbranden M., Ruysschaert J. M. Ricinus communis toxin interacts specifically with GM 1 ganglioside incorporated into planar lipid bilayers. FEBS Lett. 1981 May 18;127(2):207–210. doi: 10.1016/0014-5793(81)80206-2. [DOI] [PubMed] [Google Scholar]
  17. Kimura Y., Ikegami A. Local dielectric properties around polar region of lipid bilayer membranes. J Membr Biol. 1985;85(3):225–231. doi: 10.1007/BF01871517. [DOI] [PubMed] [Google Scholar]
  18. Köhler G., Hering U., Zschörnig O., Arnold K. Annexin V interaction with phosphatidylserine-containing vesicles at low and neutral pH. Biochemistry. 1997 Jul 1;36(26):8189–8194. doi: 10.1021/bi9703960. [DOI] [PubMed] [Google Scholar]
  19. Ladokhin A. S., Selsted M. E., White S. H. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J. 1997 Feb;72(2 Pt 1):794–805. doi: 10.1016/s0006-3495(97)78713-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee R. T., Gabius H. J., Lee Y. C. The sugar-combining area of the galactose-specific toxic lectin of mistletoe extends beyond the terminal sugar residue: comparison with a homologous toxic lectin, ricin. Carbohydr Res. 1994 Feb 17;254:269–276. doi: 10.1016/0008-6215(94)84259-0. [DOI] [PubMed] [Google Scholar]
  21. Lord J. M., Roberts L. M., Robertus J. D. Ricin: structure, mode of action, and some current applications. FASEB J. 1994 Feb;8(2):201–208. [PubMed] [Google Scholar]
  22. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  23. McIntosh T. J., Simon S. A. Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry. 1994 Aug 30;33(34):10477–10486. doi: 10.1021/bi00200a032. [DOI] [PubMed] [Google Scholar]
  24. Montich G. G., Montecucco C., Papini E., Marsh D. Insertion of diphtheria toxin in lipid bilayers studied by spin label ESR. Biochemistry. 1995 Sep 12;34(36):11561–11567. doi: 10.1021/bi00036a032. [DOI] [PubMed] [Google Scholar]
  25. Needham D., McIntosh T. J., Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry. 1988 Jun 28;27(13):4668–4673. doi: 10.1021/bi00413a013. [DOI] [PubMed] [Google Scholar]
  26. Needham D., Zhelev D. V. Lysolipid exchange with lipid vesicle membranes. Ann Biomed Eng. 1995 May-Jun;23(3):287–298. doi: 10.1007/BF02584429. [DOI] [PubMed] [Google Scholar]
  27. Ohki S., Arnold K. Surface dielectric constant, surface hydrophobicity and membrane fusion. J Membr Biol. 1990 Apr;114(3):195–203. doi: 10.1007/BF01869214. [DOI] [PubMed] [Google Scholar]
  28. Ohki S., Zschörnig O. Ion-induced fusion of phosphatidic acid vesicles and correlation between surface hydrophobicity and membrane fusion. Chem Phys Lipids. 1993 Oct;65(3):193–204. doi: 10.1016/0009-3084(93)90017-w. [DOI] [PubMed] [Google Scholar]
  29. Olsnes S., Stirpe F., Sandvig K., Pihl A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J Biol Chem. 1982 Nov 25;257(22):13263–13270. [PubMed] [Google Scholar]
  30. Paula S., Volkov A. G., Deamer D. W. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J. 1998 Jan;74(1):319–327. doi: 10.1016/S0006-3495(98)77789-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peters M. W., Barber K. R., Grant C. W. Lateral distribution of gangliosides in bilayer membranes: lipid and ionic effects. J Neurosci Res. 1984;12(2-3):343–353. doi: 10.1002/jnr.490120221. [DOI] [PubMed] [Google Scholar]
  33. Peters M. W., Mehlhorn I. E., Barber K. R., Grant C. W. Evidence of a distribution difference between two gangliosides in bilayer membranes. Biochim Biophys Acta. 1984 Dec 19;778(3):419–428. doi: 10.1016/0005-2736(84)90389-4. [DOI] [PubMed] [Google Scholar]
  34. Pohl P., Antonenko Y. N., Evtodienko V. Y., Pohl E. E., Saparov S. M., Agapov I. I., Tonevitsky A. G. Membrane fusion mediated by ricin and viscumin. Biochim Biophys Acta. 1998 Apr 22;1371(1):11–16. doi: 10.1016/s0005-2736(98)00024-8. [DOI] [PubMed] [Google Scholar]
  35. Pohl P., Antonenko Y. N., Rosenfeld E. Effect of ultrasound on the pH profiles in the unstirred layers near planar bilayer lipid membranes measured by microelectrodes. Biochim Biophys Acta. 1993 Oct 10;1152(1):155–160. doi: 10.1016/0005-2736(93)90242-r. [DOI] [PubMed] [Google Scholar]
  36. Pohl P., Saparov S. M., Antonenko Y. N. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys J. 1997 Apr;72(4):1711–1718. doi: 10.1016/S0006-3495(97)78817-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ramalingam T. S., Das P. K., Podder S. K. Ricin-membrane interaction: membrane penetration depth by fluorescence quenching and resonance energy transfer. Biochemistry. 1994 Oct 11;33(40):12247–12254. doi: 10.1021/bi00206a030. [DOI] [PubMed] [Google Scholar]
  38. Raso V. Immunotargeting intracellular compartments. Anal Biochem. 1994 Nov 1;222(2):297–304. doi: 10.1006/abio.1994.1495. [DOI] [PubMed] [Google Scholar]
  39. Saltvedt E. Structure and toxicity of pure ricinus agglutinin. Biochim Biophys Acta. 1976 Dec 21;451(2):536–548. doi: 10.1016/0304-4165(76)90149-5. [DOI] [PubMed] [Google Scholar]
  40. Sandvig K., van Deurs B. Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS Lett. 1994 Jun 6;346(1):99–102. doi: 10.1016/0014-5793(94)00281-9. [DOI] [PubMed] [Google Scholar]
  41. Sandvig K., van Deurs B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev. 1996 Oct;76(4):949–966. doi: 10.1152/physrev.1996.76.4.949. [DOI] [PubMed] [Google Scholar]
  42. Subczynski W. K., Wisniewska A., Yin J. J., Hyde J. S., Kusumi A. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 1994 Jun 21;33(24):7670–7681. doi: 10.1021/bi00190a022. [DOI] [PubMed] [Google Scholar]
  43. Tonevitsky A. G., Zhukova O. S., Mirimanova N. V., Omelyanenko V. G., Timofeeva N. V., Bergelson L. D. Effect of gangliosides on binding, internalization and cytotoxic activity of ricin. FEBS Lett. 1990 May 21;264(2):249–252. doi: 10.1016/0014-5793(90)80260-p. [DOI] [PubMed] [Google Scholar]
  44. Utsumi T., Aizono Y., Funatsu G. Interaction of ricin and its constituent polypeptides with dipalmitoylphosphatidylcholine vesicles. Biochim Biophys Acta. 1984 May 16;772(2):202–208. doi: 10.1016/0005-2736(84)90045-2. [DOI] [PubMed] [Google Scholar]
  45. Utsumi T., Aizono Y., Funatsu G. Receptor-mediated interaction of ricin with the lipid bilayer of ganglioside GM1-liposomes. FEBS Lett. 1987 May 25;216(1):99–103. doi: 10.1016/0014-5793(87)80764-0. [DOI] [PubMed] [Google Scholar]
  46. Utsumi T., Ide A., Funatsu G. Ricin A-chain induces fusion of small unilamellar vesicles at neutral pH. FEBS Lett. 1989 Jan 2;242(2):255–258. doi: 10.1016/0014-5793(89)80480-6. [DOI] [PubMed] [Google Scholar]
  47. Waggoner A. S., Stryer L. Fluorescent probes of biological membranes. Proc Natl Acad Sci U S A. 1970 Oct;67(2):579–589. doi: 10.1073/pnas.67.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhelev D. V. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes. Biophys J. 1996 Jul;71(1):257–273. doi: 10.1016/S0006-3495(96)79222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES